Skip to main content
Log in

Electron microscopic observations on nerve cell regeneration and degeneration after axon lesions

I. Changes in the nerve cell cytoplasm

  • Original Investigations
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

The neuronal changes were studied in the facial nucleus of mice after crush lesions and complete section of the facial nerve. These lesions were followed by complete nerve cell regeneration and extensive nerve cell disintegration, respectively.

Light microscopical examination showed dispersion of the Nissl substance from the first day after both types of lesion, and the cytoplasmic basophilia increased during the first week. After crush lesions the Nissl substance began to reappear after one week, and after 30 days the neurons again were normal. After section of the nerve the basophilic substance remained dispersed and there was a slow depletion of the basophilia until the majority of the cells disappeared between 14 and 60 days after the lesion.

The ultrastructural changes were identical during the first days after both types of lesion: The Nissl bodies, which consisted of parallel cisterns of granular endoplasmic reticulum and clusters of free ribosomes between the lamellae, were replaced by short segments of granular endoplasmic reticulum and free ribosomal clusters throughout the cytoplasm.

After crush lesions no changes were seen in any of the other cell organelles. New Nissl bodies began to reappear after one week. It is suggested that the dispersion and re-formation of the Nissl substance is not caused by a massive exchange of organelles but rather by a simple spreading of the membranes and ribosomal clusters and a re-arrangement of the same structures during recovery.

After section of the nerve the endoplasmic reticulum remained dispersed without further changes until shortly before disintegration. The cytoplasm then showed extensive degeneration. The neurons were ultimately removed through phagocytosis by microglial cells.

Zusammenfassung

Die Nervenzellveränderungen im Facialiskern von Mäusen wurden nach Quetschung und kompletter Durchtrennung des N. facialis untersucht. Die Läsionen waren von kompletter Nervenzellregeneration bzw. ausgedehnter Nervenzelldesintegration gefolgt.

Lichtoptische Untersuchungen zeigten Zerstreuung der Nissl-Substanz ab dem 1. Tage nach beiden Läsionsformen; Zunahme der Cytoplasmabasophilie in der 1. Woche. Nach Quetschung begann die Nissl-Substanz nach 1 Woche wieder aufzutreten, und nach 30 Tagen waren die Neuronen wieder regelrecht. Nach Nervendurchtrennung blieb die basophile Substanz zerstreut. Es kam zum langsamen Verschwinden der Basophilie und zum Untergang der meisten Zellen 14–60 Tage nach der Läsion.

Die ultrastrukturellen Veränderungen waren in den ersten Tagen nach beiden Läsionen identisch: Die aus parallelen Zisternen des granulären EPR und Haufen freier Ribosomen zwischen Lamellen bestehenden Nissl-Körper wurden durch kurze Segmente granulären EPR und freie Ribosomenhaufen im gesamten Cytoplasma ersetzt.

Nach Quetschung fanden sich keine Veränderungen an anderen Zellorganellen. Die Nissl-Körper traten nach 1 Woche wieder auf. Es wird vermutet, daß die Dispersion und Neubildung der Nissl-Substanz nicht durch einen massiven Austausch von Organellen, sondern eher durch einfache Verteilung der Membranen und Ribosomenhaufen sowie eine Neuordnung dieser Strukturen während der Erholungsperiode beding ist.

Nach Nervendurchtrennung bleibt das EPR verstreut, ohne daß weitere Veränderungen bis kurz vor der Desintegration auftreten. Später zeigt das Cytoplasma eindeutige Degenerationszeichen. Die Neurone werden schließlich durch Phagocytose durch Mikrogliazellen entfernt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres, K. H.: Untersuchungen über morphologische Veränderungen in Spinalganglien während der retrograden Degeneration. Z. Zellforsch.55, 49–79 (1961).

    Google Scholar 

  • Barron, K. D., Doolin P. F.: Ultrastructural observations on retrograde atrophy of lateral geniculate body. II. the environs of the neuronal soma. J. Neuropath exp. Neurol.27, 401–420 (1968).

    Google Scholar 

  • —— Oldershaw, J. B.: Ultrastructural observations on retrograde atrophy of lateral geniculate body. I. Neuronal alterations J. Neuropath. exp. Neurol.26, 300–326 (1967).

    Google Scholar 

  • Bernhard, W., Granboulan, N.: Electron microscopy of the nucleolus in vertebrate cells, pp. 81–149. In: The nucleus. Eds. A. J. Dalton and F. Haguenau, New York-London: Academic Press 1968.

    Google Scholar 

  • Bignami, A., Ralston III, H. J.: The cellular reaction to Wallerian degeneration in the central nervous system of the cat. Brain. Res.13, 444–461 (1969).

    Google Scholar 

  • Bodian, D.: An electron microscopic study of the monkey spinal cord. Bull. Johns Hopk. Hosp.114, 13–119 (1964).

    Google Scholar 

  • Brattgård, S. O., Edström, J. E., Hydén, H.: The chemical changes in regenerating neurons. J. Neurochem.1, 316–325 (1957).

    Google Scholar 

  • Cammermeyer, J.: Peripheral chromatolysis after transection of mouse facial nerve. Acta neuropath. (Berl.)2, 213–230 (1963).

    Google Scholar 

  • —: Species differences in acute retrograde neuronal reaction of the facial and hypoglossal nuclei. J. Hirnforsch.11, 13–29 (1969).

    Google Scholar 

  • Dixon, J. S.: “Phagocytic” lysosomes in chromatolytic neurones. Nature (Lond.)215, 657–658 (1967).

    Google Scholar 

  • Evans, D. H. L., Gray, E. G.: Changes in the fine structure of ganglion cells during chromatolysis, pp. 71–74. In: Cytology of nervous tissue. Proc. Anat. Soc. Gr. Britain and Ireland. London: Taylor and Francis Ltd. 1961.

    Google Scholar 

  • Grant, G., Westman, J.: The lateral cervical nucleus in the cat. IV. A light and electron microscopical study after midbrain lesions with demonstration of indirect Wallerian degeneration at the ultrastructural level. Exp. Brain Res.7, 51–67 (1969).

    Google Scholar 

  • Gutmann, E., Sanders, F. K.: Recovery of fibre numbers and diameters in the regeneration of peripheral nerves. J. Physiol. (Lond.)101, 489–518 (1943).

    Google Scholar 

  • Holtzman, E., Novikoff, A. B., Villaverde, H.: Lysosomes and GERL in normal and chromatolytic neurons of the rat ganglion nodosum. J. Cell Biol.33, 419–435 (1967).

    Google Scholar 

  • Hudson, G., Lazaro, A., Hartman, J. F.: A quantitative electron microscopic study of mitochondria in motor neurons following axonal section. Exp. Cell Res.24, 440–456 (1961).

    Google Scholar 

  • Karlsson, W., Schultz, R. L.: Fixation of the central nervous system for electron microscopy by aldehyde perfusion. I. Preservation with aldehyde perfusates versus direct perfusion with osmium tetroxide with special reference to membranes and the extracellular space. J. Ultrastruct. Res.12, 160–186 (1965).

    Google Scholar 

  • Kirkpatrick, J. B.: Chromatolysis in the hypoglossal nucleus of the rat: An electron microscopic analysis. J. comp. Neurol.132, 189–212 (1968).

    Google Scholar 

  • Lampert, P. W., Cressman, M. R.: Fine-structural changes of myelin sheaths after axonal degeneration in the spinal cord of rats. Amer. J. Path.49, 1139–1156 (1966).

    Google Scholar 

  • Mackey, E. A., Spiro, D., Wiener, J.: A study of chromatolysis in dorsal root ganglia at the cellular level. J. Neuropath. exp. Neurol.23, 508–526 (1964).

    Google Scholar 

  • Monneron, A., Bernhard, W.: Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrastruct. Res.27, 266–288 (1969).

    Google Scholar 

  • Pannese, E.: Investigations on the ultrastructural changes of spinal ganglion neurons in the course of axon regeneration and cell hypertrophy. I. Changes during axon regeneration. Z. Zellforsch.60, 711–740 (1963).

    Google Scholar 

  • Prineas, J.: The pathogenesis of dying-back polyneuropathies. Part. I. An ultrastructural study of experimental triorthocresyl phosphate intoxication in the cat. J. Neuropath. exp. Neurol.28, 571–597 (1969).

    Google Scholar 

  • Takano, I.: Electron microscopic studies on retrograde chromatolysis in the hypoglossal nucleus and changes in the hypoglossal nerve, following its severance and ligation. Okajimas Folia anat. jap.40, 1–69 (1964).

    Google Scholar 

  • Torvik, A.: Ultrastructural studies on retrograde nerve cell degeneration in the facial nucleus of young rabbits. (In preparation.) (1971).

  • —, Heding, A.: Histological studies on the effect of actinomycin D on retrogarde nerve cell reaction in the facial nucleus of mice. Acta neuropath. (Berl.)9, 146–157 (1967).

    Google Scholar 

  • ——: Effect of actinomycin D on retrograde nerve cell reaction. Further observations. Acta neuropath. (Berl.)14, 62–71 (1969).

    Google Scholar 

  • —, Skjörten, F.: Electron microscopic observations on nerve cell regeneration and degeneration after axon lesions. II. Changes in the glial cells. Acta neuropath. (Berl.)17, 265–282 (1971a).

    Google Scholar 

  • Torvik, A., Skjörten, F.: Ultrastructural studies on the effect of actinomycin D on retrograde nerve cell reaction. (In preparation.) (1971b).

  • Watson, W. E.: Observations on the nucleolar and total cell body nucleic acid of injured nerve cells. J. Physiol. (Lond.)196, 655–676 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torvik, A., Skjörten, F. Electron microscopic observations on nerve cell regeneration and degeneration after axon lesions. Acta Neuropathol 17, 248–264 (1971). https://doi.org/10.1007/BF00685058

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00685058

Key-Words

Navigation