Skip to main content
Log in

Interdependent Changes in Axons and Schwann Cells during Reactive Rearrangements of Myelinated Fibers

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Inverted phase contrast microscopy was used to study living undamaged frog sciatic nerve fibers and fibers subjected to different degrees of injury. Swelling of myelin incisures (MI) (Schmidt–Lanterman clefts) was found to occur in a manner similar to that observed for changes in nodes of Ranvier and to depend on swelling of the Schwann cell (SC) perikaryon. This was found to be a single process, which could be combined with nonspecific changes in nerve fiber myelin. Swelling of MI, nodes of Ranvier, and SC perikarya on exposure to mechanical trauma and hypotonic solution occurred without any change in the external diameter of fibers, as a result of marked local axon thinning. Electron microscopic studies of axon cytoskeletal structures showed that this was not merely local narrowing – a significant role was played by increases in the distribution density of the cytoskeletal components of the axoplasm (by 200–275%). These reversible reactive rearrangements to myelin fibers suggest a new type of interaction between axons and SC, with a mechanism of reversible translocation of the liquid fraction of the axoplasm into the cytoplasm of gliocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Bykov, Morphofunctional Characteristics of the Sciatic Nerve in Health and Liver Failure: Auth. Abstr. of Master’s Thesis in Med. Sci., St. Petersburg (2003).

    Google Scholar 

  2. V. I. Zhikhorev, Forensic Medical Disorganization of Cardiac Nerve Structures in Various Types of Death: Auth. Abstr. of Master’s Thesis in Med. Sci., Moscow (2007).

    Google Scholar 

  3. E. Zapryanova, O. S. Sotnikov, S. S. Sergeeva, et al., “Axon reactions precede demyelination in experimental models of multiple sclerosis,” Morfologiya, 122, No. 5, 54–59 (2002).

    Google Scholar 

  4. D. V. Rusanova, Patterns and Mechanisms of Peripheral Nerve Lesions on Exposure to Metallic Mercury and a Complex of Toxic Substances: Auth. Abstr. of Master’s Thesis in Med. Sci., Irkutsk (2007).

    Google Scholar 

  5. V. V. Semchenko and S. S. Stepanov, “The neuroglia,” in: Handbook in Histology [in Russian], SpetsLit, St. Petersburg (2011), pp. 519–532.

    Google Scholar 

  6. O. S. Sotnikov, Dynamics of the Structures of Living Neurons [in Russian], Nauka, Leningrad (1985).

    Google Scholar 

  7. G. Allt, “The node of Ranvier in experimental allergic neuritis: an electron microscope study,” J. Neurocytol., 4, No. 1, 63–76 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. V. Bay and A. M. Butt, “Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels,” Glia, 60, No. 4, 651–660 (2012).

    Article  PubMed  Google Scholar 

  9. S. R. Cajal, “Sobre un nuevo proceder de impregnacion de la neuroglia y sus resultados en los centros nerviosos del hombre y animales,” Trab. Lab. Invest. Biol., 11, 219–237 (1913).

    Google Scholar 

  10. B. Casanova, M. C. Martínez-Bisbal, C. Valero, et al., “Evidence of Wallerian degeneration in normal appearing white matter in the early stages of relapsing-remitting multiple sclerosis: a HMRS study,” J. Neurol., 250, 22–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. A. D. Gaudet, P. G. Popovich, and M. S. Ramer, “Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury,” J. Neuroinflammation, 8, 110 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  12. Y. Kawagashira, H. Koike, M. Tomita, et al., “Morphological progression of myelin abnormalities in IgM-monoclonal gammopathy of undetermined significance anti-myelin-associated glycoprotein neuropathy,” J. Neuropathol. Exp. Neurol., 69, 1143–1157 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. D. Kilinc, G. Gallo, and K. A. Barbee, “Mechanical membrane injury induces axonal beading through localized activation of calpain,” Exp. Neurol., 219, 553–561 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. G. Malkinson and M. E. Spira, “Clustering of excess growth resources within leading growth cones underlies the recurrent ‘deposition’ of varicosities along developing neurites,” Exp. Neurol., 225, 140–153 (2010).

    Article  PubMed  Google Scholar 

  15. F. L. Mastaglia, W. I. McDonald, J. V. Watson, and K. Jogendran, “Effects of x-radiation on the spinal cord: an experimental study of the morphological changes in central nerve fibres,” Brain, 99, 101–122 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. A. Nans, S. Einhaber, J. L. Salzer, et al., “Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system,” J. Neurosci. Res., 89, 310–319 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. K. Olmarker, C. Nordborg, K. Larsson, et al., “Ultrastructural changes in spinal nerve roots induced by autologous nucleus pulposus,” Spine, 21, 411–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. B. R. Ransom and R. Fern, “Does astrocytic glycogen benefit axon function and survival in CNS white matter during glucose deprivation?” Glia, 21, 134–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. R. J. Reynolds, G. L. Little, M. Lin, et al., “Imaging myelinated nerve fibers by confocal fluorescence microscopy: individual fibres in whole nerve trunks traced through multiple consecutive internodes,” J. Neurocytol., 23, 555–564 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. S. S. Scherer, J. Arroyo, and E. Peles, “Functional organization of the nodes of Ranvier,” in: Myelin Biology and Disorders, Elsevier Academic Press, Amsterdam, Boston, etc. (2004),Vol. 1, pp. 89–107.

  21. C. C. Speidel, “The experimental induction of visible structural changes in single nerve fibers in living frog tadpoles,” Cold Spring Harb. Symp. Quant. Biol., 4, 13–17 (1936).

    Article  CAS  Google Scholar 

  22. M. Takahashi, B. Billups, D. Rossi, et al., “The role of glutamate transporters in glutamate homeostasis in the brain,” J. Exp. Biol., 200, No. 2, 401–409 (1997).

    CAS  PubMed  Google Scholar 

  23. B. D. Trapp and G. J. Kidd, “Structure of the myelinated axon,” in: Myelin Biology and Disorders, Elsevier Academic Press, Amsterdam, Boston, etc. (2004), Vol. 1, pp. 3–28.

  24. X. Yin, G. Kidd, K.-A. Nave, et al., “P0 protein is required for and can induce formation of Schmidt–Lantermann incisures in myelin internodes,” J. Neurosci., 28, 7068–7073 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. R. C. Yu and R. P. Bunge, “Damage and repair of the peripheral myelin sheath and node of Ranvier after treatment with trypsin,” J. Cell Biol., 64, 1–14 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. S. Sotnikov or S. A. Novakovskaya.

Additional information

Translated from Morfologiya, Vol. 143, No. 2, pp. 35–42, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokurina, T.N., Sotnikov, O.S., Novakovskaya, S.A. et al. Interdependent Changes in Axons and Schwann Cells during Reactive Rearrangements of Myelinated Fibers. Neurosci Behav Physi 44, 528–535 (2014). https://doi.org/10.1007/s11055-014-9945-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9945-y

Keywords

Navigation