Skip to main content
Log in

Metallic yttrium additions to high temperature alloys: Influence on Al2O3 scale properties

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In the present study, the effect of adding yttrium to alloys is investigated. The microstructure of the cast Fe-25Cr-4Al-0.5Y alloy used in the study shows that the vttrium is present in different shapes and sizes as the intermetallic phase, (Fe, Cr)4(Al, Y), previously unreported in the literature. Upon oxidation in dry oxygen in the 1100–1200 °C temperature range, a columnar, fine-grained (0.5–1 μm) α-Al2O3 scale is formed which grows predominantly by inward oxygen grain-boundary transport. The intermetallic phase, during incorporation into the oxide scale, is converted into Y3Al5O12, the chromium and iron from the intermetallic diffusing back into the metal matrix. The Y3Al5O12 phase saturates the oxide scale with yttrium, which segregates to oxide grain boundaries. The microstructural features of the oxide scale resemble those of the scale formed on the yttria-dispersed alloy we investigated earlier. The improved adherence of the oxide scale is a consequence of yttrium doping, which facilitates the formation of a fine-grained scale in which oxide growth stresses can be relieved by diffusional plastic flow. Further, yttrium suppresses Al transport in the oxide scale and prevents Al2O3 nucleation within the scale, a process which can generate compressive stresses in the scale. The yttrium doping in the oxide scale is somewhat more efficient when it is present as a dispersoid in the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Febten,J. Electrochem. Soc. 108, 490 (1961).

    Google Scholar 

  2. J. M. Francis and W. H. Whitlow,Corr. Sci. 5, 701 (1965).

    Google Scholar 

  3. G. C. Wood and J. Boustead,Corr. Sci. 8, 719 (1968).

    Google Scholar 

  4. J. E. Antill and K. A. Peakall,J. Iron Steel Inst. 205, 1136 (1967).

    Google Scholar 

  5. A. M. Beltran,Cobalt 46, 3 (1970).

    Google Scholar 

  6. J. M. Francis and J. A. Jutson,Corr. Sci. 8, 445 (1968).

    Google Scholar 

  7. J. K. Tien and F. S. Pettit,Met. Trans. 3, 1587 (1972).

    Google Scholar 

  8. I. A. Kvernes,Oxid. Met. 6, 45 (1973).

    Google Scholar 

  9. J. D. Kuenzly and D. L. Douglass,Oxid. Met. 8, 139 (1974).

    Google Scholar 

  10. A. Kumar, M. Nasrallah, and D. L. Douglass,Oxid. Met. 8, 227 (1974).

    Google Scholar 

  11. F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10, 163 (1976).

    Google Scholar 

  12. F. A. Golightly, F. H. Stott, and G. C. Wood,J. Electrochem. Soc. 126, 1035 (1979).

    Google Scholar 

  13. I. M. Allam, D. P. Whittle, and J. Stringer,Oxid. Met. 12, 35 (1978).

    Google Scholar 

  14. J. C. Pivin, D. Delaunay, C. Roques-Carmes, A. M. Huntz, and P. Lacombe,Corr. Sci. 20, 351 (1980).

    Google Scholar 

  15. D. Delaunay and A. M. Huntz,J. Mat. Sci. 17, 2027 (1982).

    Google Scholar 

  16. C. S. Giggins and F. S. Pettit,Met. Trans. 2, 1071 (1971).

    Google Scholar 

  17. D. P. Whittle, M. E. El-Dashan, and J. Stringer,Corr. Sci. 17, 879 (1977).

    Google Scholar 

  18. J. Stringer, B. A. Wilcox, and R. I. Jaffee,Oxid. Met. 5, 11 (1972).

    Google Scholar 

  19. G. R. Wallwork and A. Z. Hed.Oxid. Met. 3, 229 (1971).

    Google Scholar 

  20. J. Stringer and I. G. Wright,Oxid. Met. 5, 59 (1952).

    Google Scholar 

  21. J. Stringer, A. Z. Hed, G. R. Wallwork, and B. A. Wilcox,Corr. Sci. 12, 625 (1972).

    Google Scholar 

  22. H. M. Fowler and B. A. Wilcox,Corr. Sci. 17, 253 (1977).

    Google Scholar 

  23. H. H. Davis, H. C. Graham, and I. A. Kvernes,Oxid. Met. 3, 431 (1971).

    Google Scholar 

  24. I. G. Wright and B. A. Wilcox,Met. Trans. 5, 957 (1974).

    Google Scholar 

  25. A. U. Seybolt,Corr. Sci. 6, 263 (1966).

    Google Scholar 

  26. M. S. Seltzer, A. A. Wilcox, and J. Stringer,Met. Trans. 3, 2391 (1972).

    Google Scholar 

  27. I. M. Allam, D. P. Whittle, and J. Stringer,Met. Trans. 13, 381 (1979).

    Google Scholar 

  28. H. T. Michels,Met. Trans. 7A, 379 (1976).

    Google Scholar 

  29. O. T. Goncel, D. P. Whittle, and J. Stringer,Corr. Sci. 19, 305 (1979).

    Google Scholar 

  30. I. G. Wright and J. Stringer,Metal. 6, 65 (1973).

    Google Scholar 

  31. D. P. Whittle and J. Stringer,Phil. Trans. Roy Soc. Lond. A295, 309 (1980).

    Google Scholar 

  32. T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton,J. Electrochem. Soc. 131, 923 (1984).

    Google Scholar 

  33. M. Raghavan, T. Ramanarayanan, R. Petkovic-Luton, and J. C. Scanlon,Met. Trans., to appear.

  34. M. Raghavan, J. W. Steeds, and R. Petkovic-Luton,Met. Trans. 13A, 1953 (1982).

    Google Scholar 

  35. J. L. Smialek and R. Gibala, NASA Techn. Memo. 79259 (July 1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanarayanan, T.A., Raghavan, M. & Petkovic-Luton, R. Metallic yttrium additions to high temperature alloys: Influence on Al2O3 scale properties. Oxid Met 22, 83–100 (1984). https://doi.org/10.1007/BF00656898

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656898

Key words

Navigation