Oxidation of Metals

, Volume 22, Issue 3–4, pp 83–100 | Cite as

Metallic yttrium additions to high temperature alloys: Influence on Al2O3 scale properties

  • T. A. Ramanarayanan
  • M. Raghavan
  • R. Petkovic-Luton
Article

Abstract

In the present study, the effect of adding yttrium to alloys is investigated. The microstructure of the cast Fe-25Cr-4Al-0.5Y alloy used in the study shows that the vttrium is present in different shapes and sizes as the intermetallic phase, (Fe, Cr)4(Al, Y), previously unreported in the literature. Upon oxidation in dry oxygen in the 1100–1200 °C temperature range, a columnar, fine-grained (0.5–1 μm) α-Al2O3 scale is formed which grows predominantly by inward oxygen grain-boundary transport. The intermetallic phase, during incorporation into the oxide scale, is converted into Y3Al5O12, the chromium and iron from the intermetallic diffusing back into the metal matrix. The Y3Al5O12 phase saturates the oxide scale with yttrium, which segregates to oxide grain boundaries. The microstructural features of the oxide scale resemble those of the scale formed on the yttria-dispersed alloy we investigated earlier. The improved adherence of the oxide scale is a consequence of yttrium doping, which facilitates the formation of a fine-grained scale in which oxide growth stresses can be relieved by diffusional plastic flow. Further, yttrium suppresses Al transport in the oxide scale and prevents Al2O3 nucleation within the scale, a process which can generate compressive stresses in the scale. The yttrium doping in the oxide scale is somewhat more efficient when it is present as a dispersoid in the metal.

Key words

alumina scales doping adherence plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Febten,J. Electrochem. Soc. 108, 490 (1961).Google Scholar
  2. 2.
    J. M. Francis and W. H. Whitlow,Corr. Sci. 5, 701 (1965).Google Scholar
  3. 3.
    G. C. Wood and J. Boustead,Corr. Sci. 8, 719 (1968).Google Scholar
  4. 4.
    J. E. Antill and K. A. Peakall,J. Iron Steel Inst. 205, 1136 (1967).Google Scholar
  5. 5.
    A. M. Beltran,Cobalt 46, 3 (1970).Google Scholar
  6. 6.
    J. M. Francis and J. A. Jutson,Corr. Sci. 8, 445 (1968).Google Scholar
  7. 7.
    J. K. Tien and F. S. Pettit,Met. Trans. 3, 1587 (1972).Google Scholar
  8. 8.
    I. A. Kvernes,Oxid. Met. 6, 45 (1973).Google Scholar
  9. 9.
    J. D. Kuenzly and D. L. Douglass,Oxid. Met. 8, 139 (1974).Google Scholar
  10. 10.
    A. Kumar, M. Nasrallah, and D. L. Douglass,Oxid. Met. 8, 227 (1974).Google Scholar
  11. 11.
    F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10, 163 (1976).Google Scholar
  12. 12.
    F. A. Golightly, F. H. Stott, and G. C. Wood,J. Electrochem. Soc. 126, 1035 (1979).Google Scholar
  13. 13.
    I. M. Allam, D. P. Whittle, and J. Stringer,Oxid. Met. 12, 35 (1978).Google Scholar
  14. 14.
    J. C. Pivin, D. Delaunay, C. Roques-Carmes, A. M. Huntz, and P. Lacombe,Corr. Sci. 20, 351 (1980).Google Scholar
  15. 15.
    D. Delaunay and A. M. Huntz,J. Mat. Sci. 17, 2027 (1982).Google Scholar
  16. 16.
    C. S. Giggins and F. S. Pettit,Met. Trans. 2, 1071 (1971).Google Scholar
  17. 17.
    D. P. Whittle, M. E. El-Dashan, and J. Stringer,Corr. Sci. 17, 879 (1977).Google Scholar
  18. 18.
    J. Stringer, B. A. Wilcox, and R. I. Jaffee,Oxid. Met. 5, 11 (1972).Google Scholar
  19. 19.
    G. R. Wallwork and A. Z. Hed.Oxid. Met. 3, 229 (1971).Google Scholar
  20. 20.
    J. Stringer and I. G. Wright,Oxid. Met. 5, 59 (1952).Google Scholar
  21. 21.
    J. Stringer, A. Z. Hed, G. R. Wallwork, and B. A. Wilcox,Corr. Sci. 12, 625 (1972).Google Scholar
  22. 22.
    H. M. Fowler and B. A. Wilcox,Corr. Sci. 17, 253 (1977).Google Scholar
  23. 23.
    H. H. Davis, H. C. Graham, and I. A. Kvernes,Oxid. Met. 3, 431 (1971).Google Scholar
  24. 24.
    I. G. Wright and B. A. Wilcox,Met. Trans. 5, 957 (1974).Google Scholar
  25. 25.
    A. U. Seybolt,Corr. Sci. 6, 263 (1966).Google Scholar
  26. 26.
    M. S. Seltzer, A. A. Wilcox, and J. Stringer,Met. Trans. 3, 2391 (1972).Google Scholar
  27. 27.
    I. M. Allam, D. P. Whittle, and J. Stringer,Met. Trans. 13, 381 (1979).Google Scholar
  28. 28.
    H. T. Michels,Met. Trans. 7A, 379 (1976).Google Scholar
  29. 29.
    O. T. Goncel, D. P. Whittle, and J. Stringer,Corr. Sci. 19, 305 (1979).Google Scholar
  30. 30.
    I. G. Wright and J. Stringer,Metal. 6, 65 (1973).Google Scholar
  31. 31.
    D. P. Whittle and J. Stringer,Phil. Trans. Roy Soc. Lond. A295, 309 (1980).Google Scholar
  32. 32.
    T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton,J. Electrochem. Soc. 131, 923 (1984).Google Scholar
  33. 33.
    M. Raghavan, T. Ramanarayanan, R. Petkovic-Luton, and J. C. Scanlon,Met. Trans., to appear.Google Scholar
  34. 34.
    M. Raghavan, J. W. Steeds, and R. Petkovic-Luton,Met. Trans. 13A, 1953 (1982).Google Scholar
  35. 35.
    J. L. Smialek and R. Gibala, NASA Techn. Memo. 79259 (July 1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • T. A. Ramanarayanan
    • 1
  • M. Raghavan
    • 1
  • R. Petkovic-Luton
    • 1
  1. 1.Corporate Research Science LaboratoriesExxon Research and Engineering CompanyAnnandale

Personalised recommendations