Skip to main content
Log in

Nano-yttrium-containing precipitates of T6 heat-treated A356.2 alloy when trace yttrium (Y less than 0.100 wt%) added

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To investigate the effect of yttrium (Y) on microstructure refinement and mechanical properties of aluminum alloy A356.2, the different trace contents of Y (0 wt%, 0.025 wt%, 0.050 wt%, 0.075 wt%, or 0.100 wt%) were introduced into the liquid alloy. The alloys were fabricated in a preheated permanent mold, and subsequently treated by a T6 heat treatment. The results of tensile testing indicate that the yield strength (YS), the ultimate tensile strength (UTS) and the elongation (El) of the A356.2 alloy are improved by the Y additions. The YS dependence on grain size for the test alloys follows the Hall–Petch equation, which gives \({\text{YS}} = - 354.1 + {2875}{\text{.2}}d^{ - 1/2}\) with a correlation of R2 = 0.83. As 0.050 wt% Y is added, the optimum values of the YS, UTS and El are achieved after T6 heat treatment. The secondary phases were identified by X-ray diffraction (XRD) which mainly consisted as Si, Mg2Si and Al3Y. The scanning electron microscope (SEM) and energy-dispersive spectrometer (EDS) analyses reveal the presence of the nano-sized Al3Y particles on the surface of the Si phase. The A356.2 alloy with the Y addition is strengthened by the dendritic refinement, and the presence of the micron- and nano-sized Al3Y precipitates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yang CC, Liu ZW, Zheng QL, Cao YL, Dai XH, Sun L, Zhao JR, Xing JD, Han QY. Ultrasound assisted in-situ casting technique for synthesizing small-sized blocky Al3Ti particles reinforced A356 matrix composites with improved mechanical properties. J Alloys Compd. 2018;747:580.

    Article  CAS  Google Scholar 

  2. Ram SC, Chattopadhyay K, Chakrabarty I. Microstructures and high temperature mechanical properties of A356-Mg2Si functionally graded composites in as-cast and artificially aged (T6) conditions. J Alloys Compd. 2019;805:454.

    Article  CAS  Google Scholar 

  3. Xie HJ, Cheng YL, Li SX, Cao JH, Cao L. Wear and corrosion resistant coatings on surface of cast A356 aluminum alloy by plasma electrolytic oxidation in moderately concentrated aluminate electrolytes. Trans Nonferrous Met Soc China. 2017;27(2):336.

    Article  CAS  Google Scholar 

  4. Kittisak C, Ussadawut P, Sindo K, Chaowalit L. Mechanical properties of squeeze-cast Al-7Si-0.3Mg alloys with Sc-modified Fe-rich intermetallic compounds. Rare Met. 2018;37(9):769.

    Article  Google Scholar 

  5. Jiang B, Ji ZS, Hu ML, Xu HY, Xu S. A novel modifier on eutectic Si and mechanical properties of Al-Si alloy. Mater Lett. 2019;239:13.

    Article  CAS  Google Scholar 

  6. Tsai YC, Chou CY, Lee SL, Lin CK, Lin JC, Lim SW. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys. J Alloys Compd. 2009;487(1–2):157.

    Article  CAS  Google Scholar 

  7. Lin GY, Li K, Feng D, Feng YP, Song WY, Xiao MQ. Effects of La-Ce addition on microstructure and mechanical properties of Al-18Si-4Cu-0.5Mg alloy. Trans Nonferrous Met Soc China. 2019;29(8):1592.

    Article  CAS  Google Scholar 

  8. Cheng CX, Yang XJ, He Y, Zhu YB. The properties of A356 aluminum alloy with Ce addition and its refining mechanism. Chinese J Rare Met. 2018;42(11):1127.

    Google Scholar 

  9. Torre EAD, Bustamante RP, Cisneros JC, Esparze CDG, Prieto HMM, Sanchez RM. Mechanical properties of the A356 aluminum alloy modified with La/Ce. J Rare Earth. 2013;31(8):811.

    Article  Google Scholar 

  10. Hu Z, Yan H, Rao YS. Effects of samarium addition on microstructure and mechanical properties of as-cast Al-Si-Cu alloy. Trans Nonferrous Met Soc China. 2013;23(11):3228.

    Article  CAS  Google Scholar 

  11. Liu WY, Xiao WL, Xu C, Liu MW, Ma CL. Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al-Si cast alloy. Mater Sci Eng A. 2017;693:93.

    Article  CAS  Google Scholar 

  12. Chen ZW, Ma CY, Chen P. Modifying agent selection for Al-7Si alloy by Miedema model. Int J Miner Metall Mater. 2012;19(2):131.

    Article  CAS  Google Scholar 

  13. Liu Z, Hu YM. Effect of yttrium on the microstructure of a semi-solid A356 Al alloy. Rare Met. 2008;27(5):536.

    Article  CAS  Google Scholar 

  14. Xu C, Ma CL, Sun YF, Hanada SJ, Lu GX, Guan SK. Optimizing strength and ductility of Al-7Si-0.4Mg foundry alloy: role of Cu and Sc addition. J Alloys Compd. 2019;810:151944.

    Article  CAS  Google Scholar 

  15. Li QL, Li BQ, Li JB, Zhu YQ, Xia TD. Effect of yttrium addition on the microstructures and mechanical properties of hypereutectic Al-20Si alloy. Mater Sci Eng A. 2018;722:47.

    Article  CAS  Google Scholar 

  16. Dong Y, Zheng RG, Lin XP, Ye J, Sun L. Investigation on the modification behavior of A356 alloy inoculated with a Sr-Y composite modifier. J Rare Earth. 2013;31(2):204.

    Article  CAS  Google Scholar 

  17. Rao AKP, Das K, Murty BS, Chakraborty M. Microstructural features of as-cast A356 alloy inoculated with Sr, Sb modifiers and Al-Ti-C grain refiner simultaneously. Mater Lett. 2008;62(2):273.

    Article  Google Scholar 

  18. Zhang X, Huang LK, Zhang B, Chen YZ, Duan SY, Liu G, Yang CL, Liu F. Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment. Mater Sci Eng A. 2019;753:168.

    Article  CAS  Google Scholar 

  19. Mahmoud MG, Elgallad EM, Ibrahim MF, Samuel FH. Effect of rare earth materials on porosity formation in A356 alloy. Int J Metalcast. 2018;12(2):251.

    Article  Google Scholar 

  20. Hu XP, Zhao Y, Wang Q, Zhang XZ, Li RX, Zhang BR. Effect of pouring and cooling temperatures on microstructures and mechanical properties of as-cast and T6 treated A356 alloy. China Foundry. 2019;16(6):380.

    Article  Google Scholar 

  21. Mao GL, Yan H, Zhu CC, Wu Z, Gao WL. The varied mechanisms of yttrium (Y) modifying a hypoeutectic Al-Si alloy under conditions of different cooling rates. J Alloys Compd. 2019;806:909.

    Article  CAS  Google Scholar 

  22. Wei ZF, Lei YS, Yan H, Xu XH, He JJ. Microstructure and mechanical properties of A356 alloy with yttrium addition processed by hot extrusion. J Rare Earth. 2019;37(6):659.

    Article  CAS  Google Scholar 

  23. Zhang YZ, Gu J, Tian Y, Gao HY, Wang J, Sun BD. Microstructural evolution and mechanical property of Al-Zr and Al-Zr-Y alloys. Mater Sci Eng A. 2014;616:132.

    Article  CAS  Google Scholar 

  24. Hu JL, Bo H, Liu LB, Jin ZP. Thermodynamic study of the Al-Sc-Y system. Thermochimi Acta. 2018;661:147.

    Article  CAS  Google Scholar 

  25. Wu DY, Kang J, Feng ZH, Su R, Liu CH, Li T, Wang LS. Utilizing a novel modifier to realize multi-refinement and optimized heat treatment of A356 alloy. J Alloys Compd. 2019;791:628.

    Article  CAS  Google Scholar 

  26. Li QL, Li BQ, Liu JJ, Li JB, Liu DX, Lan YF, Xia TD. Modification of hypereutectic Al-20 wt% Si alloy based on the addition of yttrium and Al-5Ti-1B modifiers mixing melt. Int J Metalcast. 2019;13:367.

    Article  CAS  Google Scholar 

  27. Dang B, Liu CC, Liu F, Liu YZ, Li YB. Effect of as-solidified microstructure on subsequent solution-treatment process for A356 Al alloy. Trans Nonferrous Met Soc China. 2016;26(3):634.

    Article  CAS  Google Scholar 

  28. Milkerelt B, Wanderka N, Schick C, Kessler O. Continuous cooling precipitation diagrams of Al-Mg-Si alloys. Mater Sci Eng A. 2012;550:87.

    Article  Google Scholar 

  29. Dorin T, Ramajayam M, Babaniaris S, Jiang L, Langan TJ. Precipitation sequence in Al-Mg-Si-Sc-Zr alloys during isochronal aging. Materialia. 2019;8:100437.

    Article  Google Scholar 

  30. Jian SY, Wang RH. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys. J Mater Sci Technol. 2019;35(7):1354.

    Article  Google Scholar 

  31. Ma GH, Li RD, Li RX. Effect of Mg2Si particles on low-temperature fracture behavior of A356 alloy. Mater Sci Eng A. 2016;674:666.

    Article  CAS  Google Scholar 

  32. Wang QG, Davidson CJ. Solidification and precipitation behaviour of Al-Si-Mg casting alloys. J Mater Sci. 2001;36:739.

    Article  CAS  Google Scholar 

  33. Asgar G, Peng LM, Fu PH, Yuan LY, Liu Y. Role of Mg2Si precipitates size in determining the ductility of A357 cast alloy. Mater Design. 2020;186:108280.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51601102), the Natural Science Foundation of Shandong Province (No. ZR2016EEM48) and the Key Research and Development Program Plan of Shandong Province (No. 2018GGX103012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Ping Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, XP., Wang, Q., Hu, H. et al. Nano-yttrium-containing precipitates of T6 heat-treated A356.2 alloy when trace yttrium (Y less than 0.100 wt%) added. Rare Met. 40, 3279–3288 (2021). https://doi.org/10.1007/s12598-020-01671-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01671-3

Keywords

Navigation