Skip to main content
Log in

High-Temperature Oxidation Behavior and Oxide Scale Structure of Yttrium-Modified Ni–16Mo–7Cr–4Fe Superalloy at 1273 K

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxidation of a Ni–16Mo–7Cr–4Fe superalloy containing various yttrium concentrations (0.00, 0.05, 0.12, 0.21 and 0.43 wt%) was undertaken in air at 1273 K for times up to 250 h. The nature and the structure of the oxide scales were investigated by synchrotron radiation techniques, TEM, SEM, XPS, etc. The oxidation kinetics of the alloys containing a low Cr content of 7 wt% sectionally obeyed the parabolic law. The oxidation rate of the alloy in the steady-state stage was reduced by about a factor of 30 by the micro-addition of 0.05 wt% yttrium. Yttrium microalloying greatly enhanced the selective oxidation of chromium and promoted the formation of a compact inner Cr2O3-enriched layer, which can inhibit the outward diffusion of oxidizable elements, especially the volatile-oxide-forming-element Mo, and remarkably improve the adhesion of the oxide scale to the matrix. The oxide scale of the alloy containing 0.05 wt% Y had a thin duplex structure: an outer NiO/NiFe2O4 layer and an inner Cr2O3/YCrO3/spinel oxide layer. In comparison, the oxide scale of the Y-free alloy and the alloys containing excess Y roughly had a thick triple-layer structure: an outmost NiO/NiFe2O4 layer, an intermediate Mo0.84Ni0.16/Cr2O3/spinel oxide layer and an inner Cr2O3/spinel oxide layer. Increasing the concentration of Y in solid solution and reducing the amount of Y-bearing compound are helpful to optimize the effect of Y on improving the oxidation resistance of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. W. Koger, in ORNL/TM-4189 (Oak Ridge National Laboratory, 1972).

  2. J. H. DeVan, in ORNL/TM-2021, Vol. 1 (Oak Ridge National Laboratory, 1969).

  3. W. R. Huntley and P. A. Gnadt, ORNL-TM-3863 (Oak Ridge National Laboratory (operated by Union Carbide Corporation for the US Atomic Energy Commission), Oak Ridge, Tennessee, 1973).

  4. J. X. Fan, J. X. Zhang, Y. L. Lu, Z. J. Li, X. T. Zhou and P. Huai, Chinese Journal of Rare Metals 39, 399–405 (2015).

    Google Scholar 

  5. J. X. Fan, Y. L. Lu, Z. J. Li, J. S. Dong, J. X. Zhang, X. T. Zhou and P. Huai, Rare Metal Materials and Engineering 44, 1953–1958 (2015).

    Google Scholar 

  6. T. Liu, J. S. Dong, H. Li, Z. J. Li, X. T. Zhou and L. H. Lou, Chinese Journal of Materials Research 28, 895–900 (2014).

    Google Scholar 

  7. L. E. McNeese, in ORNL-5047 (Oak Ridge National Laboratory, 1975), p. 125–150.

  8. L. E. McNeese, in ORNL-5132 (Oak Ridge National Laboratory, 1976), p. 1–15.

  9. S. X. Wang, C. Li, B. J. Xiong, X. B. Tian and S. Q. Yang, Applied Surface Science 257, 5826–5830 (2011).

    Article  Google Scholar 

  10. J. T. Lu, S. L. Zhu and F. H. Wang, Oxidation of Metals 76, 67–82 (2011).

    Article  Google Scholar 

  11. R. G. Ding, O. A. Ojo and M. C. Chaturvedi, Intermetallics 15, 1504–1510 (2007).

    Article  Google Scholar 

  12. J. H. Luan, Z. B. Jiao, G. Chen and C. T. Liu, Journal of Alloys and Compounds 602, 235–240 (2014).

    Article  Google Scholar 

  13. D. Monceau, D. Oquab, C. Estournes, M. Boidot, S. Selezneff, Y. Thebault and Y. Cadoret, Surface & Coatings Technology 204, 771–778 (2009).

    Article  Google Scholar 

  14. R. Vilar, E. C. Santos, P. N. Ferreira, N. Franco and R. C. da Silva, Acta Materialia 57, 5292–5302 (2009).

    Article  Google Scholar 

  15. K. L. Wang, Q. B. Zhang, M. L. Sun, X. G. Wei and Y. M. Zhu, Applied Surface Science 174, 191–200 (2001).

    Article  Google Scholar 

  16. E. Bullock, C. Lea and M. McLean, Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences 295, 332 (1980).

    Article  Google Scholar 

  17. C. G. Hsu and J. M. Pan, Analyst 110, 1245–1248 (1985).

    Article  Google Scholar 

  18. A. Sato, H. Harada, Y. Koizumi, T. Kobayashi and H. Imai, Journal of the Japan Institute of Metals 70, 380–383 (2006).

    Article  Google Scholar 

  19. F. H. Stott, G. C. Wood and J. G. Fountain, Oxidation of Metals 14, 135–146 (1980).

    Article  Google Scholar 

  20. P. A. Vozzella and D. A. Condit, Analytical Chemistry 60, 2497–2500 (1988).

    Article  Google Scholar 

  21. C. B. Xiao and Y. F. Han, Scripta Materialia 41, 1217–1221 (1999).

    Article  Google Scholar 

  22. P. J. Zhou, J. J. Yu, X. F. Sun, H. R. Guan, X. M. He and Z. Q. Hu, Materials Science and Engineering A 551, 236–240 (2012).

    Article  Google Scholar 

  23. P. J. Zhou, J. J. Yu, X. F. Sun, H. R. Guan and Z. Q. Hu, Scripta Materialia 57, 643–646 (2007).

    Article  Google Scholar 

  24. P. Moulin, A. M. Huntz and P. Lacombe, Acta Metallurgica 28, 1295–1300 (1980).

    Article  Google Scholar 

  25. Y. D. Zhang, C. Zhang, H. Lan, P. Y. Hou and Z. G. Yang, Corrosion Science 53, 1035–1043 (2011).

    Article  Google Scholar 

  26. F. C. Nunes, J. Dille, J. L. Delplancke and L. H. de Almeida, Scripta Materialia 54, 1553–1556 (2006).

    Article  Google Scholar 

  27. T. B. Massalski, H. Okamoto and P. R. Subramanian, Binary Alloy Phase Diagrams Vol. 2 (ASM International, Willian W. Scott, 1986).

  28. Z. Zhang, J. Wang, E.-H. Han and W. Ke, Corrosion Science 53, 3623–3635 (2011).

    Article  Google Scholar 

  29. S. E. Ziemniak and M. Hanson, Corrosion Science 48, 498–521 (2006).

    Article  Google Scholar 

  30. A. A. Hermas, Corrosion Science 50, 2498–2505 (2008).

    Article  Google Scholar 

  31. P. Stefanov, D. Stoychev, I. Valov, A. Kakanakova-Georgieva and T. Marinova, Materials Chemistry and Physics 65, 222–225 (2000).

    Article  Google Scholar 

  32. H. Sun, X. Q. Wu and E. H. Han, Corrosion Science 51, 2565–2572 (2009).

    Article  Google Scholar 

  33. A. Machet, A. Galtayries, S. Zanna, L. Klein, V. Maurice, P. Jolivet, M. Foucault, P. Combrade, P. Scott and P. Marcus, Electrochimica Acta 49, 3957–3964 (2004).

    Article  Google Scholar 

  34. N. S. McIntyre, T. E. Rummery, M. G. Cook and D. Owen, Journal of the Electrochemical Society 123, 1164–1170 (1976).

    Article  Google Scholar 

  35. N. S. McIntyre, D. G. Zetaruk and D. Owen, Journal of the Electrochemical Society 126, 750–760 (1979).

    Article  Google Scholar 

  36. Q. Zhang, R. Tang, K. J. Yin, X. Luo and L. F. Zhang, Corrosion Science 51, 2092–2097 (2009).

    Article  Google Scholar 

  37. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy, (Perkin-Elmer Co., Minneapolis, 1979).

    Google Scholar 

  38. J. B. Yan, Y. M. Gao, L. Liang, Z. Z. Ye, Y. F. Li, W. Chen and J. J. Zhang, Corrosion Science 53, 329–337 (2011).

    Article  Google Scholar 

  39. V. D. Divya, S. S. K. Balam, U. Ramamurty and A. Paul, Scripta Materialia 62, 621–624 (2010).

    Article  Google Scholar 

  40. R. A. Rapp, Metallurgical Transactions B 15B, 195–212 (1984).

    Article  Google Scholar 

  41. P. Y. Hou, in Shreir’s Corrosion (2010), p. 195–239.

  42. G. C. Wood and F. H. Stott, Materials Science and Technology 3, 519–530 (1987).

    Article  Google Scholar 

  43. E. A. Brandes and G. B. Brook (eds.), Smithells Metals Reference Book, 7th ed, (Butterworth-Heinemann Ltd., Oxford, 1992).

    Google Scholar 

  44. M. Sennour, L. Marchetti, F. Martin, S. Perrin, R. Molins and M. Pijolat, Journal of Nuclear Materials 402, 147–156 (2010).

    Article  Google Scholar 

  45. S. Tei, M. Hirotoshi, S. Tatsuya, F. Yasuhiko and K. Kiyoshi, Journal of Plasma and Fusion Research 78, 3–4 (2002).

    Article  Google Scholar 

  46. G. R. Smolik, D. A. Petti and S. T. Schuetz, Journal of Nuclear Materials 283–287, 1458–1462 (2000).

    Article  Google Scholar 

  47. D. P. Moon, Materials Science and Technology 5, 754–764 (1989).

    Article  Google Scholar 

  48. P. Y. Hou, Materials Science Forum 696, 39–44 (2011).

    Article  Google Scholar 

  49. X. L. Li, S. M. He, X. T. Zhou, P. Huai, Z. J. Li, A. G. Li and X. H. Yu, Journal of Nuclear Materials 464, 342–345 (2015).

    Article  Google Scholar 

  50. Y. Saito, B. Önay and T. Maruyama, Journal de Physique IV Colloque 03, 217–230 (1993).

    Article  Google Scholar 

  51. T. Amanoa, H. Isobe, N. Sakai and T. Shishido, Journal of Alloys and Compounds 344, 394–400 (2002).

    Article  Google Scholar 

  52. D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society of London Series A 295, 309–329 (1980).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51371189, 11775292, 51801227) and the National key research and development program of China (2016YFB0700404). The authors also wish to thank beamlines BL15U1 and BL14B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time and help during experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangming He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., He, S., Liang, J. et al. High-Temperature Oxidation Behavior and Oxide Scale Structure of Yttrium-Modified Ni–16Mo–7Cr–4Fe Superalloy at 1273 K. Oxid Met 92, 67–88 (2019). https://doi.org/10.1007/s11085-019-09914-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09914-0

Keywords

Navigation