Skip to main content
Log in

MO theoretical studies of electron pair decorrelation processes. I. Pair correlation energy and single bond dissociation

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The homolytic dissociation of a single bond involves the decorrelation of one electron pair. Thus, the contribution of electron correlation to dissociation energies is large. In the present paper a new procedure is presented which allows the computation of the (within the given basis) complete correlation energy of one optimized electron pair. The method which requires only modest computational effort has been applied to the calculation of dissociation energies of a number of bonds of different types. The results show that the correlation of the electron pair of the bond which is broken contributes about 50–80% to the change of the total correlation energy occuring during the dissociation process which amounts to 20–70 kcal/mol. The fraction of correlation contributed by the bond electron pair as well as the relative importance of the left-right correlation within the bond depend very much on the type of the bond. In the case of CC and CH single bonds our method yields dissociation energies which are low by only about 5 kcal/mol. Thus, the method seems to be well suited for the calculation of potential surfaces of non-concerted organic chemical reactions which involve diradicals as intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salem, L., Rowland, C.:Angew. Chem.84, 86 (1972)

    Google Scholar 

  2. Shavitt, I.: Mod. Theoret. Chem. 3, 189, H. F. Schaefer III (Ed.). New York: Plenum Press 1977

  3. Roos, B.: Chem. Phys. Letters15, 153 (1972)

    Google Scholar 

  4. Buenker, R. J., Peyerimhoff, S. D.: Theoret. Chim. Acta (Berl.)39, 217 (1975)

    Google Scholar 

  5. Hinze, J., Roothaan, C. C. J.: Prog. Theoret. Phys., Suppl.40, 37 (1967); Veillard, A., Clementi, E.: Theoret. Chim. Acta (Berl.)7, 133 (1967)

    Google Scholar 

  6. Das, G., Wahl, A. C.: J. Chem. Phys.,44, 87 (1966)

    Google Scholar 

  7. Wahl, A. C., Das, G.: Adv. Quant. Chem.5, 361 (1970); Das, G., Wahl, A. C.: J. Chem. Phys.56, 3532 (1972)

    Google Scholar 

  8. Kirby-Docken, K., Liu, B.: J. Chem. Phys.66, 4309 (1977); Hay, P. J., Dunning, T. H.: J. Chem. Phys.64, 5077 (1976); Karlström, G., Engström, S., Jönsson, B.: Chem. Phys. Letters57, 390 (1978)

    Google Scholar 

  9. Harding, L. B., Goddard, W. A.: J. Am. Chem. Soc.99, 4520 (1977)

    Google Scholar 

  10. Salem, L.: Pure Appl. Chem.33, (1973)

  11. Staemmler, V.: Theoret. Chim. Acta (Berl.)45, 89 (1977)

    Google Scholar 

  12. Staemmler, V., Jungen, M.: Theoret. Chim. Acta (Berl.)24, 152 (1952)

    Google Scholar 

  13. Kollmar, H.: Chem. Phys. Letters8, 533 (1971)

    Google Scholar 

  14. Kolos, W., Roothaan, C. C. J.: Rev. Mod. Phys.32, 219 (1960)

    Google Scholar 

  15. Huzinaga, S.: J. Chem. Phys.42, 1293 (1965)

    Google Scholar 

  16. Ahlrichs, R., Driessler, F.: Theoret. Chim. Acta (Berl.)36, 275 (1975)

    Google Scholar 

  17. Böhm, M. C., Gleiter, R.: Tetrahedron Letters, 1179 (1978)

  18. Kollmar, H.: J. Am. Chem. Soc.102, 2617 (1980)

    Google Scholar 

  19. Wenzel, K.: unpublished

  20. Kollmar, H.: Theoret. Chim. Acta (Berl.)50, 235 (1978)

    Google Scholar 

  21. Hehre, W. J., Salem, L., Willcott, M. R.: J. Am. Chem. Soc.96, 4328 (1974)

    Google Scholar 

  22. Meyer, W.: J. Chem. Phys.58, 1017 (1973)

    Google Scholar 

  23. Ahlrichs, R., Lischka, H., Stemmler, V., Kutzelnigg, W.: J. Chem. Phys.62, 1225 (1975)

    Google Scholar 

  24. Buenker, R. J., Peyerimhoff, S. D.: J. Am. Chem. Soc.91, 4342 (1969)

    Google Scholar 

  25. Ahlrichs, R., Lischka, H., Zurawski, B., Kutzelnigg, W.: J. Chem. Phys.63, 4685 (1975)

    Google Scholar 

  26. JANAF Thermochemical Tables, 2nd ed., NSRDS-NBS 37, Washington, 1971

  27. Herzberg, G.: Spectra of diatomic molecules. New York: D. Van Nostrand & Co. 1950; Infrared and raman spectra of polyatomic molecules. New York: D. Van Nostrand & Co. 1945.

    Google Scholar 

  28. Horsley, J. A., Lean, Y., Moser, C., Salem, L., Stevens, T. M., Wright, J. S.: J. Am. Chem. Soc.94, 279 (1972)

    Google Scholar 

  29. Landolt-Börnstein, Numerical data and functional relationships in science and technology, new series, II/7 (1976)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollmar, H. MO theoretical studies of electron pair decorrelation processes. I. Pair correlation energy and single bond dissociation. Theoret. Chim. Acta 58, 19–30 (1980). https://doi.org/10.1007/BF00635720

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00635720

Key words

Navigation