Skip to main content
Log in

van der Waals potential: an important complement to molecular electrostatic potential in studying intermolecular interactions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Electrostatics and van der Waals (vdW) interactions are two major components of intermolecular weak interactions. Electrostatic potential has been a very popular function in revealing electrostatic interaction between the system under study and other species, while the role of vdW potential was less recognized and has long been ignored. In this paper, we explicitly present definition of vdW potential, describe its implementation details, and demonstrate its important practical values by several examples. We hope this work can arouse researchers’ attention to the vdW potential and promote its application in the studies of weak interactions. Calculation, visualization, and quantitative analysis of the vdW potential have been supported by our freely available code Multiwfn (http://sobereva.com/multiwfn).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lu T, Chen F (2013) Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2, (N2)2, and (H2)(N2). J. Mol. Model. 19:5387. https://doi.org/10.1007/s00894-013-2034-2

    Article  CAS  PubMed  Google Scholar 

  2. Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graph. Model. 38:314. https://doi.org/10.1016/j.jmgm.2012.07.004

  3. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs: Comp. Mol. Sci. 1:153. https://doi.org/10.1002/wcms.19

    Article  CAS  Google Scholar 

  4. Fu R, Lu T, Chen F (2014) Comparison of the methods for predicting the reactive site of electrophilic substitution reaction. Acta Phys. -Chim. Sin. 30:628. https://doi.org/10.3866/PKU.WHXB201401211

  5. Jin J-L, Li H-B, Lu T, Duan Y-A, Geng Y, Wu Y, Su Z-M (2013) Density functional studies on photophysical properties and chemical reactivities of the triarylboranes: effect of the constraint of planarity. J. Mol. Model. 19:3437. https://doi.org/10.1007/s00894-013-1845-5

    Article  CAS  PubMed  Google Scholar 

  6. Manzetti S, Lu T, Behzadi H, Estrafili MD, Thi Le H-L, Vach H (2015) Intriguing properties of unusual silicon nanocrystals. RSC Adv. 5:78192. https://doi.org/10.1039/C5RA17148B

  7. Lu T, Manzetti S (2014) Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms. Struct. Chem. 25:1521. https://doi.org/10.1007/s11224-014-0430-6

    Article  CAS  Google Scholar 

  8. Manzetti S, Lu T (2013) The geometry and electronic structure of Aristolochic acid: possible implications for a frozen resonance. J. Phys. Org. Chem. 26:473. https://doi.org/10.1002/poc.3111

    Article  CAS  Google Scholar 

  9. Clark T, Murray JS, Politzer P (2018) A perspective on quantum mechanics and chemical concepts in describing noncovalent interactions. Phys. Chem. Chem. Phys. 20:30076. https://doi.org/10.1039/C8CP06786D

    Article  CAS  PubMed  Google Scholar 

  10. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J. Mol. Model. 21:52. https://doi.org/10.1007/s00894-015-2585-5

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J. Comput. Chem. 25:1157. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  12. Emamian S, Lu T, Kruse H, Emamian H (2019) Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem. 40:2868. https://doi.org/10.1002/jcc.26068

    Article  CAS  PubMed  Google Scholar 

  13. Liu Z, Lu T, Chen Q (2021) Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon: focusing on molecular adsorption and stacking. Carbon 171:514. https://doi.org/10.1016/j.carbon.2020.09.048

  14. Lu T, Chen F. (2012) Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33:580. https://doi.org/10.1002/jcc.22885

  15. Lu T, Chen F (2012) Comparison of computational methods for atomic charges. Acta Phys. -Chim. Sin. 28:1. https://doi.org/10.3866/PKU.WHXB2012281

    Article  CAS  Google Scholar 

  16. Leach AR (2001) Molecular modelling principles and applications. 2 ed.; Pearson Education: Essex

  17. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114:10024. https://doi.org/10.1021/ja00051a040

    Article  CAS  Google Scholar 

  18. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14:33. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  19. M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; G. Scalmani; V. Barone; G. A. Petersson; H. Nakatsuji; X. Li; M. Caricato; A. V. Marenich; J. Bloino; B. G. Janesko; R. Gomperts; B. Mennucci; H. P. Hratchian; J. V. Ortiz; A. F. Izmaylov; J. L. Sonnenberg; Williams; F. Ding; F. Lipparini; F. Egidi; J. Goings; B. Peng; A. Petrone; T. Henderson; D. Ranasinghe; V. G. Zakrzewski; J. Gao; N. Rega; G. Zheng; W. Liang; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; K. Throssell; J. A. Montgomery Jr.; J. E. Peralta; F. Ogliaro; M. J. Bearpark; J. J. Heyd; E. N. Brothers; K. N. Kudin; V. N. Staroverov; T. A. Keith; R. Kobayashi; J. Normand; K. Raghavachari; A. P. Rendell; J. C. Burant; S. S. Iyengar; J. Tomasi; M. Cossi; J. M. Millam; M. Klene; C. Adamo; R. Cammi; J. W. Ochterski; R. L. Martin; K. Morokuma; O. Farkas; J. B. Foresman; D. J. Fox. Gaussian 16 A.03, Wallingford, CT, 2016

  20. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chem. Accounts 28:213

    Article  CAS  Google Scholar 

  21. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98:11623. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  22. Grimme S, et al. xtb program: https://github.com/grimme-lab/xtb/ (accessed on Apr 12, 2020)

  23. Pracht P, Caldeweyher E, Ehlert S, Grimme S (2019) A robust non-self-consistent tight-binding quantum chemistry method for large molecules. ChemRxiv. https://doi.org/10.26434/chemrxiv.8326202

  24. Grimme S, Bannwarth C, Shushkov P et al (2017). J. Chem. Theory Comput. 13:1989. https://doi.org/10.1021/acs.jctc.7b00118

    Article  CAS  PubMed  Google Scholar 

  25. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  26. Lu T, Chen Q, Liu Z (2019) A thorough theoretical exploration of intriguing characteristics of cyclo[18]carbon: geometry, bonding nature, aromaticity, weak interaction, reactivity, excited states, vibrations, molecular dynamics and various molecular properties. ChemRxiv. https://doi.org/10.26434/chemrxiv.11320130

  27. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon 165:461. https://doi.org/10.1016/j.carbon.2020.05.023

    Article  CAS  Google Scholar 

  28. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo[18]carbon: bonding character, electron delocalization, and aromaticity. Carbon 165:468. https://doi.org/10.1016/j.carbon.2020.04.099

    Article  CAS  Google Scholar 

  29. Lu T, Chen Q (2020) Ultrastrong regulation effect of electric field on cyclo[18]carbon: phenomenon and essence. ChemRxiv. https://doi.org/10.26434/chemrxiv.12919349

  30. Parker TM, Burns LA, Parrish RM, Ryno AG, Sherrill CD (2014) Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. J. Chem. Phys. 140:094106. https://doi.org/10.1063/1.4867135

    Article  CAS  PubMed  Google Scholar 

  31. Szalewicz K (2012) Symmetry-adapted perturbation theory of intermolecular forces. WIREs: Comp. Mol. Sci. 2:254. https://doi.org/10.1002/wcms.86

    Article  CAS  Google Scholar 

  32. Jiao Y, Liu Y, Zhao W, Wang Z, Ding X, Liu H, Lu T (2017) Theoretical study on the interactions of halogen-bonds and pnicogen-bonds in phosphine derivatives with Br2, BrCl, and BrF. Int. J. Quantum Chem. 117:e25443. https://doi.org/10.1002/qua.25443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Chen, Q. van der Waals potential: an important complement to molecular electrostatic potential in studying intermolecular interactions. J Mol Model 26, 315 (2020). https://doi.org/10.1007/s00894-020-04577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04577-0

Keywords

Navigation