Skip to main content
Log in

Influence of verapamil on the inotropism and pharmacokinetics of digoxin

  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

Verapamil has been demonstrated to inhibit the elimination of digoxin and to increase its steady state plasma level by 60–80%. Animal studies suggest that verapamil abolishes the intropic action of other drugs such as ouabain and dopamine. The clinical consequences of this drug interaction were investigated by examining the inotropic activity of single doses of digoxin (assessed from systolic time intervals), with and without coadministration of verapamil. Verapamil decreased total-body clearance of digoxin from 4.68±0.41 to 3.29±0.26 ml/min/kg (p<0.001) and increased the plasma half-life of the drug from 33.50±2.38 to 41.31±2.27 h (p<0.01). Verapamil had no influence on the base-line values of the systolic time intervals. Both in the absence and presence of verapamil, digoxin caused significant shortening of the total electromechanical systole and the left ventricular ejection time. However, compared to control conditions, the decay of these changes was slower in the presence of verapamil, in parallel with the prolongation of the plasma half-life of digoxin. A linear relationship was established between reductions in the systolic time intervals and the computer-derived concentration of digoxin in the deep compartment. These regression lines, which represent the concentration-effect relationships of the inotropism of digoxin, were not affected by verapamil. Thus, verapamil per se had no measurable effect either on base-line contractile function of the heart or on digoxin-induced inotropism. The elevated plasma digoxin concentration induced by verapamil appears cardioactive in terms of inotropism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pedersen KE, Dorph-Pedersen A, Hvidt S, Klitgaard NA, Nielsen-Kudsk F (1981) Digoxin-verapamil interaction. Clin Pharmacol Ther 30: 311–316

    Article  PubMed  CAS  Google Scholar 

  2. Klein HO, Lang R, Weiss E, Segni ED, Libhaber C, Guerrero J, Kaplinsky E (1982) The influence of verapamil on serum digoxin concentration. Circulation 65: 998–1003

    PubMed  CAS  Google Scholar 

  3. Belz GG, Aust PE, Munkes R (1981) Digoxin plasma concentrations and nifedipine. Lancet 1: 844–845

    Article  PubMed  CAS  Google Scholar 

  4. Ball WJJr, Tse-Eng D, Bilezikian JP, Wallick E, Schwartz A, Butler VP (1979) Studies of a quinidine-digoxin interaction. Fed Proc 38: 1042

    Google Scholar 

  5. DoherteY JE, Straub KD, Murphey ML, De Soyza N, Bisset JK, Kane JJ (1980) Digoxin-quinidine interaction-changes in canine tissue concentration from steady state with quinidine. Am J Cardiol 45: 1196–1200

    Article  Google Scholar 

  6. Straub KD, Kane JJ, Bisset JK (1978) Alteration of digitalis binding by quinidine: A mechanism of digitalis-quinidine interaction. Circulation [Suppl] 2: II

    Google Scholar 

  7. Hirsh PD, Weiner HJ, North RL (1980) Further insight into digoxin-quinidine interaction: Lack of correlation between serum digoxin concentration and inotropic state of the heart. Am J Cardiol 46: 863–868

    Article  PubMed  CAS  Google Scholar 

  8. Steiness E, Waldorff S, Hansen PB, Kjaergaard H, Buch J, Egeblad H (1980) Severe reduction of digoxin-induced inotropism during quinidine administration. Clin Pharmacol Ther 141: 791–795

    Article  Google Scholar 

  9. Belz GG, Aust PE, Doering W, Heinz M, Schneider B (1982) Pharmacodynamics of a single dose of quinidine during chronic digoxin treatment. A randomized double blind placebo and sparteine-controlled crossover study. Eur J Clin Pharmacol 22: 111–117

    Article  Google Scholar 

  10. Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Annu Rev Pharmacol Toxicol 17: 149–166

    Article  PubMed  CAS  Google Scholar 

  11. Fleckenstein A, Tritthart H, Döring H-J, Byron KY (1972) BAY a 1040 — ein hochaktiver Ca++-antagonistischer Inhibitor der elektro-mechanischen Koppelungsprozesse im Warmblüter-Myocard. Arzneimittelforsch 22: 22–23

    PubMed  CAS  Google Scholar 

  12. Magnussen I, Nielsen-Kudsk F (1974) Effects of verapamil and propranolol on contractility, frequency, coronary flow and oxygen consumption in the isolated rabbit heart. Acta Pharmacol Toxicol 34: 141–151

    Article  CAS  Google Scholar 

  13. Ferlintz J, Easthope JL, Aronow WS (1979) Effects of verapamil on myocardial performance in coronary disease. Circulation 59: 313–319

    Google Scholar 

  14. Ryden L, Satre H (1971) The haemodynamic effect of verapamil. Eur J Clin Pharmacol 3: 153–157

    Article  Google Scholar 

  15. Singh BN, Roche AHG (1977) Effects of intravenous verapamil on hemodynamics in patients with heart disease. Am Heart J 94: 593–599

    PubMed  CAS  Google Scholar 

  16. Goldman S, Olajos M, Morkin E (1982) Effects of verapamil on positive inotropic stimulation in the left atrium and ventricle of conscious dogs. J Pharmacol Exp Ther 222: 270–275

    PubMed  CAS  Google Scholar 

  17. Wagner JG (1975) Fundamentals of clinical pharmacokinetics. Drug Intelligence Publications, Hamilton, Ill, USA

    Google Scholar 

  18. Gibaldi M, Perrier D (1975) Pharmacokinetics. Marcel Dekker, New York

    Google Scholar 

  19. Forrester W, Lewis RP, Weissler AM, Wilke TA (1974) The onset and magnitude of the contractile response to commonly used digitalis glycosides in normal subjects. Circulation 49: 517–521

    Google Scholar 

  20. Hoeschen RJ, Cuddy TE (1975) Dose-response relation between therapeutic levels of serum digoxin and systolic time intervals. Am J Cardiol 35: 469–472

    Article  PubMed  CAS  Google Scholar 

  21. Kelman AW, Summer DJ, Londsdale M, Lawrence JR, Whiting B (1980) Comparative pharmacokinetics and pharmacodynamics of cardiac glycosides. Br J Clin Pharmacol 10: 135–143

    PubMed  CAS  Google Scholar 

  22. Weisler AM, Gamel WG, Grode HE, Cohen S, Schoenfeld CD (1964) The effect of digitalis on ventricular ejection in normal human subjects. Circulation 29: 721–729

    Google Scholar 

  23. Ochs HR, Grube E, Greenblatt DJ, Arendt R, Bodem G (1981) Pharmacokinetics and pharmacodynamics of intravenous digoxin and digitoxin. Klin Wochenschr 59: 889–897

    Article  PubMed  CAS  Google Scholar 

  24. Ochs HR, Otten H, Bodem G (1979) Digoxininduzierte Veränderungen des Belastungs-EKG in Relation zur Digoxinplasmakonzentration. Klin Wochenschr 57: 161–168

    Article  PubMed  CAS  Google Scholar 

  25. Nielsen-Kudsk F, Askholt J (1981) Myocardial pharmacokinetics and pharmacodynamics of nifedipine in the isolated rabbit heart. Acta Pharmacol Toxicol 48: 330–339

    Article  CAS  Google Scholar 

  26. Mikkelsen E, Anderson KE, Lederballe Pedersen O (1979) Effect of digoxin on isolated human mesenteric vessels. Acta Pharmacol Toxicol 45: 25–31

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, K.E., Thayssen, P., Klitgaard, N.A. et al. Influence of verapamil on the inotropism and pharmacokinetics of digoxin. Eur J Clin Pharmacol 25, 199–206 (1983). https://doi.org/10.1007/BF00543791

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543791

Key words

Navigation