Skip to main content
Log in

Degeneration and regeneration in the insect central nervous system. I

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

After cutting a neck connective of Schistocerca gregaria, only 2% of the axons on each side of the lesion degenerate. The remainder show reactive changes, which last for approximately one week at 28° C. There is no morphological change in either of the pro/mesothoracic connectives after injury to the neck connective. Phagocytes invade the stumps, but attack only degenerating cells, and are absent by Day 7.

Regeneration from the connective stumps begins a week after injury; a functional link may be formed by Day 10, but by Day 23 the new connective cannot function adequately for the locust's survival, if the undamaged connective is then cut.

The chief morphological changes in the reactive axoplasm are increases in the number of mitochondria, neurotubules, vesicles and vacuoles. These changes appear to be a local response, and not to be influenced by the neuron cell bodies. Some glial cytoplasm (presumably enucleated), degenerates rapidly after injury, and replacement begins by Day 5. Tracheoles, never seen in normal connectives appear in the reactive connective from Days 3–8, this is interpreted as a migration from the ganglion in response to oxygen deficiency in the connective.

The results are discussed in relationship to previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashhurst, D. E.: The connective tissues of insects. Ann. Rev. Entomol. 13, 45–74 (1968).

    Google Scholar 

  • Blümcke, S., u. H. R. Niedorf: Fluoreszenmikroskopische und elektronenmikroskopische Untersuchungen an regenerierenden adrenergischen Nervenfasern. Z. Zellforsch. 68, 724–732 (1965).

    Google Scholar 

  • Bodenstein, D.: Studies on nerve regeneration in Periplaneta americana. J. exp. Zool. 136, 89–116 (1957).

    Google Scholar 

  • Boulton, P. S., and C. H. F. Rowell: Structure and function of the extraneural sheath in insects. Nature (Lond.) 217, 379–380 (1968).

    Google Scholar 

  • Bullock, T. A., and G. A. Horridge: Structure and function in the nervous systems of invertebrates. San Francisco: Freeman 1965.

    Google Scholar 

  • Coggeshall, R. E., and S. W. Fawcett: The fine structure of the CNS of the leech Hirudo medicinalis. J. Neurophysiol. 27, 229–289 (1964).

    Google Scholar 

  • Delphin, F.: The histology and possible function of the neurosecretory cells in the ventral ganglia of Schistocerca gregaria Forskal (Orthoptera: Acrididae). Trans. roy. ent. Soc., Lond. 117, 167–214 (1965).

    Google Scholar 

  • Estable, C., W. Acosta, and J. R. Sotelo: An electron microscope study of the regenerating nerve fibres. Z. Zellforsch. 46, 387–399 (1957).

    Google Scholar 

  • Farley, R. D., and N. S. Milburn: Structure and function of the giant fibre system in the cockroach Periplaneta americana. J. Insect. Physiol. 15, 457–476 (1969).

    Google Scholar 

  • Guthrie, D. M.: Regenerative growth in insect nerve axons. J. Insect Physiol. 8, 79–92 (1962).

    Google Scholar 

  • —: The regeneration of motor axons in an insect. J. Insect Physiol. 13, 1593–1611 (1967).

    Google Scholar 

  • Hess, A.: Experimental anatomical studies of pathways in the severed central nerve cord of the cockroach. J. Morph. 103, 479–502 (1958c).

    Google Scholar 

  • —: The fine structure of degenerating nerve fibres, their sheaths and their terminations in the CNS of the cockroach (Periplaneta americana). J. biophys. biochem. Cytol. 7, 339–344 (1960).

    Google Scholar 

  • Horridge, G. A.: Pitch discrimination in locusts. Proc. roy. Soc. B 155, 218–231 (1961).

    Google Scholar 

  • Hoy, R. R., G. D. Bittner, and D. Kennedy: Regeneration in crustacean motoneurons: evidence for axonal fusion. Science 156, 251–252 (1967).

    Google Scholar 

  • Hudson, G., A. Lazarow, and J. F. Hartmann: A quantitative electron microscopic study of mitochondria in motor neurones following axonal section. Exp. Cell Res. 24, 440–456 (1961).

    Google Scholar 

  • Jacklet, J. W., and M. J. Cohen: Nerve regeneration: correlation of electrical, histological and behavioural events. Science 156, 1640–1643 (1967).

    Google Scholar 

  • Lampert, P. W.: A comparative electron microscopic study of reactive, degenerating, regenerating and dystrophic axons. J. Neuropath. exp. Neurol. 26, 345–368 (1967).

    Google Scholar 

  • —, and M. Cressman: Axonal regeneration in the dorsal columns of the spinal cord of adult rats. An electron microscopic study. Lab. Invest. 13, 825–839 (1964).

    Google Scholar 

  • Lane, N. J.: The thoracic ganglia of the grasshopper, Melanoplus differentialis: Fine structure of the perineurium and neuroglia with special reference to the intracellular distribution of phosphatases. Z. Zellforsch. 86, 293–312 (1968).

    Google Scholar 

  • Melamed, J., and O. Trujillo-Cenóz: Electronmicroscopic observations on the reactional changes occuring in insect nerve fibres after transection. Z. Zellforsch. 59, 851–856 (1963).

    Google Scholar 

  • Pellegrino De Iraldi, A., and E. De Robertis: The neurotubular system of the axon and the origin of granulated and non-granulated vesicles in regenerating nerves. Z. Zellforsch. 87, 330–344 (1968).

    Google Scholar 

  • —, and G. Jaim Etcheverry: Granulated vesicles in retinal synapses and neurons. Z. Zellforsch. 81, 283–296 (1967).

    Google Scholar 

  • Pipa, R. L.: Insect neurometamorphosis. III. Nerve cord shortening in a moth, Galleria mellonella. (L) may be accomplished by humoral potentiation of neuroglial motility. J. exp. Zool. 164, 47–60 (1967).

    Google Scholar 

  • —, and P. S. Woolever: Insect neurometamorphosis. II. The fine structure of perineurial connective tissue, adipohemocytes, and the shortening ventral nerve cord of a moth, Galleria mellonella (L.). Z. Zellforsch. 68, 80–101 (1965).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Rowell, C. H. F., and A. E. Dorey: The number and size of axons in the thoracic connectives of the desert locust Schistocerca gregaria Forsk. Z. Zellforsch. 83, 288–294 (1967).

    Google Scholar 

  • -, and J. M. McKay: An acridid auditory interneuron. I. Functional connections and response to single sounds. J. exp. Biol. (1969) (in press).

  • Satija, R. C.: Histological and experimental study of nervous pathways in the brain and thoracic nerve cord of Locusta migratoria migratoriodes R. and F. Res. Bull. Panjab Univ. Sci. 137, 13–32 (1958).

    Google Scholar 

  • Slautterback, D. B.: Cytoplasmic microtubules. 1. Hydra. J. Cell Biol. 18, 367–388 (1963).

    Google Scholar 

  • Smith, D. S., and J. E. Treherne: Functional aspects of the organisation of the insect nervous system. In: Advances in insect physiology, vol. 1, p. 401–484 (eds J. W. Beament, J. E. Treherne and V. B. Wigglesworth). New York and London: Academic Press 1963.

    Google Scholar 

  • Thé, G. De: Cytoplasmic microtubules in different animal cells. J. Cell Biol. 23, 265–276 (1964).

    Google Scholar 

  • Treherne, J. E., and S. H. P. Maddrell: Axonal function and ionic regulation in the CNS of a phytophagous insect Carausius morosus. J. exp. Biol. 47, 235–247 (1967).

    Google Scholar 

  • Usherwood, P. N. R.: Responses of insect muscle to denervation. 1. Resting potential changes. J. Insect Physiol. 9, 247–255 (1963).

    Google Scholar 

  • Vowles, D. W.: The structure and connexions of the corpora pedunculata in bees and ants. Quart. J. micr. Sci. 96, 239–255 (1955).

    Google Scholar 

  • Waxman, S. G.: Micropinocytotic Invaginations in the axolemma of peripheral nerves. Z. Zellforsch. 86, 571–573 (1968).

    Google Scholar 

  • Webster, H. de F.: Transient, focal accumulation of axonal mitochondria during the early stages of Wallerian degeneration. J. Cell Biol. 12, 361–384 (1962).

    Google Scholar 

  • Wettstein, R., and J. R. Sotelo: Electronmicroscopic study on the regenerative process of peripheral nerves of mice. Z. Zellforsch. 59, 708–730 (1963).

    Google Scholar 

  • Wigglesworth, V. B.: Growth and regeneration in the tracheal sytem of an insect Rhodnius prolixus (Hemiptera). Quart. J. micr. Sci. 95, 115–137 (1954).

    Google Scholar 

  • —: The histology of the nervous system of an insect, Rhodnius prolixus (Hemiptera). Quart. J. micr. Sci. 100, 285–298 (1959a).

    Google Scholar 

  • —: The role of the epidermal cells in the “migration” of tracheoles in Rhodnius prolixus (Hemiptera). J. exp. Biol. 36, 632–640 (1959b).

    Google Scholar 

  • —: The nutrition of the central nervous system in the cockroach Periplaneta americana L. The role of perineurium and glial cells in the mobilisation of reserves. J. exp. Biol. 37, 500–512 (1960).

    Google Scholar 

  • —: Cytological changes in the fat body of Rhodnius during starvation, feeding and oxygen want. J. Cell Sci. 2, 243–256 (1967).

    Google Scholar 

  • Wolfe, D. E., and J. G. Nicholls: Uptake of radioactive glucose and its conversion to glycogen by neurons and glial cells in the leech CNS. J. Neurophysiol. 30, 1593–1609 (1967).

    Google Scholar 

  • Zelená, J.: Bidirectional movements of mitochondria along axons of an isolated nerve segment. Z. Zellforsch. 92, 186–196 (1968).

    Google Scholar 

  • —, L. Lubinska, and J. E. Gutmann: Accumulation of organelles at the ends of interrupted axons. Z. Zellforsch. 91, 200–219 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a “Study and Serve” grant from the British Government, and a grant from the Worshipful Company of Goldsmiths.

I wish to acknowledge the help and advice given to me by Dr. C. H. F. Rowell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulton, P.S. Degeneration and regeneration in the insect central nervous system. I. Z. Zellforsch. 101, 98–118 (1969). https://doi.org/10.1007/BF00335588

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335588

Key-Words

Navigation