Skip to main content
Log in

The Effect of Pronase on Mollusk, Leech, and Frog Nerve Ganglia Causes the Formation of Neuron–Neuronal Gap Junctions

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract—

Using electron microscopy, the effect of pronase on nerve ganglia of a mollusk, leech, and frog was studied for the first time. It was revealed that the effect of pronase causes the retraction and removal of glial membranes, as well as denudation of nerve fibers and neuronal bodies with a simultaneous convergence of neuromembranes of these structures, and leads to the formation of gap junctions. This effect of pronase on the membranes belongs to a number of unusual, unexpected functions, and we obtained the observed effect for the first time. Since we previously registered reverberation of a nerve impulse in the ganglia of a frog and a leech under the same conditions, we believe that the obtained morphological data represent an evidence of the formation of electrical synapses under the action of pronase on the nerve ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alcamí, P. and Pereda, A.E., Beyond plasticity: the dynamic impact of electrical synapses on neural circuits, Nat. Rev. Neurosci., 2019, vol. 20, p. 253. https://doi.org/10.1038/s41583-019-0133-5

    Article  CAS  PubMed  Google Scholar 

  2. Allen, M., Ghosh, S., Ahern, G.P., Villapol, S., Maguire-Zeiss, K.A., and Conant, K., Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1, Sci. Rep., 2016, vol. 6, p. 35497. https://doi.org/10.1038/srep35497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Antonov, V.K., Khimiya proteoliza (Chemistry of Proteolysis), Moscow: Nauka, 1991.

  4. Berkinblit, M.B., Bozhkova, V.P., Boitsova, L.Yu., Mitelman, L.A., Potapova T.V., Chailakhyan L.M., Sharovskaya, Yu.Yu. Vysokopronitsaemye kontaktnye membrany (Highly Permeable Contact Membranes), Moscow: Nauka, 1981.

  5. Fontes, J.D., Ramsey, J., Polk, J.M., Koop, A., Denisova, J.V., and Belousov, A.B., Death of neurons following injury requires conductive neuronal gap junction channels but not a specific connexin, PLoS One, 2015, vol. 10, p. e0125395. https://doi.org/10.1371/journal.pone.0125395

  6. Ixmatlahua, D.J., Vizcarra, B., Gómez-Lira, G., Romero-Maldonado, I., Ortiz, F., Rojas-Piloni, G., and Gutiérrez, R., Neuronal glutamatergic network electrically wired with silent but activatable gap junction, J. Neurosci., 2020, vol. 40, p. 4661. https://doi.org/10.1523/JNEUROSCI.2590-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kerstein, P.C., Patel, K.M., and Gomez, T.M., Calpain-mediated proteolysis of TALIN and FAK regulates adhesion dynamics necessary for axon guidance, J. Neurosci., 2017, vol. 37, p. 1568. https://doi.org/1010.1523/JNEUROSCI.2769-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirichenko, E.Y., Povilaitite, P.E., and Sukhov, A.G., Role of gap junctions in local rhythmogenesis in cortical columns, Neurosci. Behav. Physiol., 2009, vol. 39, no. 2, p. 199.

    Article  PubMed  Google Scholar 

  9. Lun’ko, O.O., Isaiev, D.S., Maxymiuk, O.P., Kryshtal’, O.O., and Isaieva, O.V., The effect of enzymatic treatment using proteases on properties of persistent sodium current in CA1 pyramidal neurons of rat hippocampus, Fiziol. Zhiv., 2014, vol. 60, p. 75.

    Article  Google Scholar 

  10. Magnowska, M., Gorkiewicz, T., Suska, A., Wawr-zyniak, M., Rutkowska-Wlodarczyk, I., Kaczmarek, L., and Wlodarczyk, J., Transient ECM protease activity promotes synaptic plasticity, Sci. Rep., 2016, vol. 6, p. 27757. https://doi.org/10.1038/srep27757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakagawa, N. and Hosoya, T., Slow dynamics in microcolumnar gap junction network of developing neocortical pyramidal neurons, Neuroscience, 2019, vol. 406, p. 554. https://doi.org/10.1016/j.neuroscience.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  12. Sergeeva, S.S., Sotnikov, O.S., and Paramonova, N.M., A method for creating a neurophysiological model of a simple nervous system with reverberation, Fiziol. Zh. im. I.M. Sechenova, 2020, vol. 106. № 9, p. 1163. https://doi.org/10.31857/S0869813920080075

    Article  CAS  Google Scholar 

  13. Sotnikov, O.S., A series of experimental electrical synapses and reverberation of a nerve impulse, Tekhnol.  Zhivykh  Sist., 2021, vol. 18, no. 3, p. 52. https://doi.org/10.18127/j20700997-202103-05

    Article  Google Scholar 

  14. Sotnikov, O.S. and Kostenko, M.A., Reactive changes of living nerve endings in the culture of isolated neurons deprived of glia, Arkh. AGE, 1981 vol. 80, no. 6, p. 17.

    CAS  Google Scholar 

  15. Spray, D.C., Iglesias, R., Shraer, N., Suadicani, S.O., Belzer, V., Hanstein, R., and Hanani, M., Gap junction mediated signaling between satellite glia and neurons in trigeminal ganglia, Glia, 2019, vol. 67, p. 791. https://doi.org/10.1002/glia.23554

    Article  PubMed  PubMed Central  Google Scholar 

  16. Talukdar, S., Emdad, L., Das, S.K., and Fisher, P.B., GAP junctions: multifaceted regulators of neuronal differentiation, Tissue Barriers, 2022, vol. 10, p. 1982349. https://doi.org/10.1080/21688370.2021.1982349

    Article  CAS  PubMed  Google Scholar 

  17. Thomas, D., Senecal, J.M., Lynn, B.D., Traub, R.D., and Nagy, J.I., Connexin 36 localization along axon initial segments in the mammalian CNS, Int. J. Physiol. Pathophysiol. Pharmacol., 2020, vol. 12, p. 153.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Y. and Belousov, A.B., Deletion of neuronal gap junction protein connexin 36 impairs hippocampal LTP, Neurosci. Lett., 2011, vol. 502, p. 30. https://doi.org/10.1016/j.neulet.2011.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, G. and Wu, X., The potential antiepileptogenic effect of neuronal Cx36 gap junction channel blockage, Transl. Neurosci., 2021, vol. 12, p. 46. https://doi.org/10.1515/tnsci-2021-0008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, Y., Shen, F.Y., Liu, Y.Z., Wang, L., Wang, Y.W., and Wang, Z., Dependence of generation of hippocampal CA1 slow oscillations on electrical synapses, Neurosci. Bull., 2020, vol. 36, p. 39. https://doi.org/10.1007/s12264-019-00419-z

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by state program 47 SP “Science and Technology Development of the Russian Federation” (2019–2030), topic 0134-2019-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Sotnikov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. The experiments were carried according to the requirements of the Council of the European Community (86/609/EEC) 1986 and the decision on the use of laboratory animals of the Commission of the Pavlov Institute of Physiology, Russian Academy of Sciences, on Humane Treatment of Animals no. 26/12 dated December 26, 2019.

Additional information

Translated by A. Barkhash

Abbreviations: GJ—gap junction; TJ—tight junction; ES—electrical synapse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotnikov, O., Sergeeva, S. & Paramonova, N. The Effect of Pronase on Mollusk, Leech, and Frog Nerve Ganglia Causes the Formation of Neuron–Neuronal Gap Junctions. Cell Tiss. Biol. 17, 197–202 (2023). https://doi.org/10.1134/S1990519X23020128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23020128

Keywords:

Navigation