Skip to main content
Log in

Topographic anatomy of ascending and descending neurons of the supraesophageal, meso- and metathoracic ganglia in paleo- and neopterous insects

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Topographic anatomy of ascending (AN) and descending (DN) neurons of the supraesophageal and thoracic ganglia in the nervous system of winged insects (Pterygota), representatives of the infraclasses Palaeoptera (Odonata, Aeschna grandis, dragonfly) and Neoptera (Blattoptera, Periplaneta americana, cockroach), was studied. These insects differ in ecological niches, lifestyles, sets of behavioral complexes, levels of locomotor system development, evolutionary age and systematic position. Cell bodies and processes of ANs and DNs were stained with nickel chloride (NiCl2), and their topography was studied on total preparations of the supraesophageal and thoracic ganglia. Unlike cockroaches, the dragonfly protocerebrum was found to contain DNs sending their processes to ocelli. Dragonfly DN processes exhibit a specific branching pattern in thoracic ganglia, with collaterals coming off both ipsi- and contralaterally. In cockroaches, collaterals of DN processes come off ipsilaterally. The AN cell bodies in dragonfly meso- and metathoracic ganglia lie both ipsi- and contralaterally relative to the ascending process, whereas in cockroaches most of the AN cell bodies in the same ganglia are located contralaterally. Substantial differences in the distrubution of DNs and ANs in insects with different manners of locomotion appear to reflect different degrees of control the supraesophageal ganglion exerts over the activity of segmental centers. This does not seem to be related to the evolutionary age of insects or their systematic position. Probably, different degrees of control over locomotion depend on the way of food acquisition: catching prey in the air in “paleopterous” dragonflies versus maneuverable walking or running over a solid substrate in “neopterous” cockroaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Staudacher, E. and Schildberger, K., Gating of sensory responses of descending brain neurons during walking in crickets, J. Exp. Biol., 1998, vol. 201, pp. 559–572.

    Google Scholar 

  2. Buschges, A., Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion, J. Neurophysiol., 2005, vol. 93, pp. 1127–1135.

    Article  PubMed  Google Scholar 

  3. Fuchs, E., Holmes, P., David, I., and Ayali, A., Proprioceptive feedback reinforces centrally generated stepping patterns in the cockroach, J. Exp. Biol., 2012, vol. 215, pp. 1884–1891.

  4. Ache, J.M., Haupt, S.S., and Durr, V., A direct descending pathway informing locomotor networks about tactile sensor movement, J. Neurosci., 2015, vol. 35 (9), pp. 4081–4091.

    Article  CAS  PubMed  Google Scholar 

  5. Staudacher, E., Distribution and morphology of descending brain neurons in the cricket Gryllus bimaculatus, Cell Tiss. Res., 1998, vol. 294, pp. 187–202.

    Article  Google Scholar 

  6. Okada, R., Sakura, M., and Mizunami, M., Distribution of dendrites of descending neurons and its implications for the basic organization of the cockroach brain, J. Comp. Neurol., 2003, vol. 458, pp. 158–174.

    Article  PubMed  Google Scholar 

  7. Burdohan, J.A. and Comer, C.M., Cellular organization of an antennal mechanosensory pathway in the cockroach, Periplaneta Americana, J. Neurosci., 1996, vol. 16, pp. 5830–5843.

    CAS  PubMed  Google Scholar 

  8. Staudacher, E. and Schildberger, K., Gating of sensory responses of descending brain neurons during walking in crickets, J. Exp. Biol., 1998, vol. 201, pp. 559–572.

    Google Scholar 

  9. Staudacher, E.M., Sensory responses of descending brain neurons in the walking cricket,Gryllus bimaculatus, J. Comp. Physiol. A, 2001, vol. 187, pp. 1–17.

    Article  CAS  PubMed  Google Scholar 

  10. Kien, J., The initiation and maintenance of walking in the locust: an alternative to the command concept, Proc. Roy. Soc. Lond. Ser. B, 1983, vol. 219, pp. 137–174.

    Article  Google Scholar 

  11. Hedwig, B., Control of grasshopper stridulation by descending brain neurons, Verh. Dtsch. Zool. Ges., 1995, vol. 88, pp. 181–190.

    Google Scholar 

  12. Simmons, P., Connexions between a movementdetecting visual interneurone and flight motoneurones of a locust, J. Exp. Biol., 1980, vol. 86, pp. 87–97.

    Google Scholar 

  13. Reichert, H., Rowell, C.H.F., and Griss, C., Course correction circuitry transkates feature detection into behavioural action in locusts, Nature, 1985, vol. 315, pp. 142–144.

    Article  Google Scholar 

  14. Hedwig, B. and Heinrich, R., Identified descending brain neurons control different stridulatory motor patterns in an acridid grasshopper, J. Comp. Physiol. A, 1997, vol. 180, pp. 285–294.

    Article  Google Scholar 

  15. Hedwig, B., Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state, J. Neurophysiol., 2000, vol. 83, pp. 712–722.

    CAS  PubMed  Google Scholar 

  16. Bohm, H. and Schildberger, K., Brain neurons involved in the control of walking in the cricket Gryllus bimaculatus, J. Exp. Biol., 1992, vol. 166, pp. 113–130.

    Google Scholar 

  17. Heindrich, R., Impact of descending brain neurons on the control of stridulation, walking, and flight in Orthoptera, Microsc. Res. Tech., 2002, vol. 56, pp. 292–301.

    Article  Google Scholar 

  18. Rowell, C.H.F., Descending interneurones of the locust reporting deviation from flight course: what is their role in steering? J. Exp. Biol., 1989, vol. 146, pp. 177–194.

  19. Hensler, K. and Rowell, C.H.F., Control of optomotor responses by descending deviation detector neurones in intact flying locusts, J. Exp. Biol., 1990, vol. 149, pp. 191–205.

    Google Scholar 

  20. Nebeling, B., Morphology and physiology of auditory and vibratory ascending interneurones in bushcrickets, J. Exp. Zool., 2000, vol. 286, pp. 219–230.

    Article  CAS  PubMed  Google Scholar 

  21. Zorovic, M. and Hedwig, B., Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking, J. Neurophysiol., 2011, vol. 105 (5), pp. 2181–2194.

    CAS  PubMed  Google Scholar 

  22. Berry, R., van Kleef, J., and Stange, G., The mapping of visual space by dragonfly lateral ocelli, J. Comp. Physiol. A, 2007, vol. 193, pp. 495–513.

    Article  Google Scholar 

  23. Berry, R., Stange, G., Olberg, R., and van Kleef, J., The mapping of visual space by identified large second-order neurons in the dragonfly median ocellus, J. Comp. Physiol. A, 2006, vol. 192, pp. 1105–1123.

    Article  Google Scholar 

  24. Wilson, M., The functional organisation of locust ocelli, J. Comp. Physiol. A, 1978, vol. 124, pp. 297–316.

    Article  Google Scholar 

  25. Stange, G., The ocellar component of flight equilibrium control in dragonflies, J. Comp. Physiol. A, 1981, vol. 141, pp. 335–347.

    Article  Google Scholar 

  26. Stange, G., Stowe, S., Chahl, J.S., and Massaro, A., Anistropic imaging in the dragonfly median ocellus: a matched filter for horizon detection, J. Comp. Physiol. A, 2002, vol. 188, pp. 455–467.

    Article  CAS  Google Scholar 

  27. Milde, J. and Homberg, U., Ocellar interneurons in the honeybee: characteristics of spiking L-neurons, J. Comp. Physiol. A, 1984, vol. 155, pp. 151–160.

    Article  Google Scholar 

  28. Williams, J.L.D., Anatomical studies of the insect central nervous system: a ground-plan of the midbrain and an introduction to the central complex in the locust Schistocerca gregaria (Orthoptera), J. Zool., 1975, vol. 176, pp. 67–86.

    Article  Google Scholar 

  29. Boyan, G.S. and Williams, J.L.D., Descending interneurons in the brain of the cricket, Naturwiss., 1981, vol. 67, pp. 486–487.

    Article  Google Scholar 

  30. Brodfuehrer, P.D. and Hoy, R.R., Ultrasound sensitive neurons in the cricket brain, J. Comp. Physiol. A, 1990, vol. 166, pp. 651–662.

    Article  CAS  PubMed  Google Scholar 

  31. Olberg, R.M., Identified target-selective visual interneurons descending from the dragonfly brain, J. Comp. Physiol. A, 1986, vol. 159, pp. 827–840.

    Article  Google Scholar 

  32. Gonzalez-Bellido, P.T, Peng, H., Yang, J., Georgopoulos, A.P., and Olberg, R.M., Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction, Proc. Natl. Acad. Sci., 2013, vol. 110, pp. 696–701.

    Article  CAS  PubMed  Google Scholar 

  33. Olberg, R.M., Object- and self-movement detectors in the ventral nerve cord of the dragonfly, J. Comp. Physiol. A, 1981, vol. 141, pp. 327–334.

    Article  Google Scholar 

  34. Strausfeld, N.J. and Gronenberg, W., Descending neurons supplying the neck and flight motor of Diptera: organization and neuroanatomical relationships with visual pathways, J. Comp. Neurol. A, 1990, vol. 302, pp. 954–972.

    Article  CAS  Google Scholar 

  35. Buschges, A., Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion, J. Neurophysiol., 2005, vol. 93, pp. 1127–1135.

    Article  PubMed  Google Scholar 

  36. Camhi, J.M., Escape behavior in the cockroach: distributed neural processing, Experientia, 1988, vol. 44, pp. 401–408.

    Article  CAS  PubMed  Google Scholar 

  37. Ritzmann, R.E., The neural organization of cockroach escape and its role in context-dependent orientation, Biological Neural Networks in Invertebrate Neuroethology and Robotics, Beer, R.D., Ritzmann, R.E., and McKenna, T., Eds., Boston, 1993, pp. 113–137.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Isavnina.

Additional information

Original Russian Text © I.Yu. Severina, I.L. Isavnina, A.N. Knyazev, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 5, pp. 362—370.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severina, I.Y., Isavnina, I.L. & Knyazev, A.N. Topographic anatomy of ascending and descending neurons of the supraesophageal, meso- and metathoracic ganglia in paleo- and neopterous insects. J Evol Biochem Phys 52, 397–406 (2016). https://doi.org/10.1134/S0022093016050082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093016050082

Keywords

Navigation