Skip to main content
Log in

Electric-field effects on gravikinesis in Paramecium

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Equilibrated Paramecium caudatum cells exposed to a constant DC gradient reorient with their depolarized anterior ends toward the cathode (galvanotaxis). Voltage gradients were applied to cells swimming either horizontally or vertically. Their velocity and orientation were recorded and compared to unstimulated cells. The DC field increased the horizontal velocity (= reference) up to 175% (galvanokinesis). Swimming velocities saturated after 1 min and were unchanged during the following 4 min. The upward and downward swimming velocities of stimulated cells were below those of horizontal swimmers. The difference in vertical rates (determining gravikinesis) was independent of variations in absolute velocity. Normalization of vertical velocities to horizontal velocities (= 100%) separated DC-field dependent changes from gravity-induced changes in velocities. A weak voltage gradient (0.3 V/cm) was most effective in raising downward gravikinesis up to threefold (-202 μm/s) above the unstimulated reference (-66 μm/s) and to change sign of gravikinesis in upward swimmers (-43 μm/s →+33 μm/s). We conclude that DC-field stimulation is equivalent to a depolarizing bias on gravikinetic responses of Paramecium. The stimulation does not directly interfere with mechanoreception, but modulates somatic Ca2+ entry to induce contraction of the cell soma. This presumably affects the gating of gravisensory transduction channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen AD (1988) Cytology. In: Görtz HD (ed) Paramecium. Springer, Berlin Heidelberg New York Tokyo, pp 4–40

    Google Scholar 

  • Bräucker R, Machemer-Röhnisch S, Machemer H (1994) Graviresponses in Paramecium and Didinium examined under varied hypergravity conditions. J Exp Biol 197: 271–294

    Google Scholar 

  • Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202: 1203–1205

    Google Scholar 

  • Deitmer JW (1981) Voltage and time characteristics of the potassium mechanoreceptor current in the ciliate Stylonychia. J Comp Physiol 141: 173–182

    Google Scholar 

  • Deitmer JW (1983) Ca channels in the membrane of the hypotrich ciliate Stylonychia. In: Grinnell A, Moody WJ (eds) The physiology of excitable cells. Liss, New York, pp 51–63

    Google Scholar 

  • Deitmer JW (1986) Voltage-dependence of two inward currents carried by calcium and barium in the ciliate Stylonychia. J Physiol (Lond) 380: 551–574

    Google Scholar 

  • De Peyer J, Machemer H (1978a) Are receptor-activated ciliary motor responses mediated through voltage or current? Nature 276: 285–287

    Google Scholar 

  • De Peyer J, Machemer H (1978b) Hyperpolarizing and depolarizing mechanoreceptor potentials in Stylonychia. J Comp Physiol 127: 255–266

    Google Scholar 

  • Hudspeth AJ (1983) The hair cells of the inner ear. Sci Am 248: 42–52

    Google Scholar 

  • Hudspeth AJ (1992) Hair-bundle mechanics and a model for mechanoelectrical transduction by hair cells. In: Corey DP, Rooper SD (eds) Sensory transduction. Rockefeller University Press, New York, pp 357–370

    Google Scholar 

  • Hudspeth AJ, Gillespie PG (1994) Pulling springs to tune transduction: adaptation by vertebrate hair cells. Neuron 12: 1–9

    Google Scholar 

  • Iwatsuki K, Naitoh Y (1982) Photoresponses in colourless Paramecium. Experientia 38: 1453–1454

    Google Scholar 

  • Jahn T (1961) The mechanism of ciliary movement. I. Ciliary reversal and activation by electric current: the Ludloff phenomenon in terms of core and volume conductors. J Protozool 8: 369–380

    Google Scholar 

  • Jerka-Dziadosz M, Jenkins LM, Nelson EM, Williams NE, JaeckelWilliams R, Frankel J (1995) Cellular polarity in ciliates: persistence of global polarity in a disorganized mutant of Tetrahymena thermophila that disrupts cytoskeletal organization. Dev Biol 169: 644–661

    Google Scholar 

  • Koehler O (1926) Galvanotaxis. In: Bethe A, von Bergman G, Embden G, Ellinger A (eds) Handbuch der normalen und pathologischen Physiologie, vol 11. Springer, Berlin, pp 1027–1049

    Google Scholar 

  • Machemer H (1986) Electromotor coupling in cilia. In: Lüttgau HC (ed) Membrane control of cellular activity. Fortschr Zool 33: 205–250

  • Machemer H (1988a) Electrophysiology. In: Görtz HD (ed) Paramecium. Springer, Berlin Heidelberg New York Tokyo, pp 185–215

    Google Scholar 

  • Machemer H (1988b) Motor control of cilia. In: Görtz HD (ed) Paramecium. Springer, Berlin Heidelberg New York Tokyo, pp 216–235

    Google Scholar 

  • Machemer H (1989) Cellular behaviour modulated by ions: electrophysiological implications. J Protozool 36: 463–487

    Google Scholar 

  • Machemer H (1995) A theory of gravikinesis in Paramecium. Adv Space Res 17: 11–20

    Google Scholar 

  • Machemer H, Bräucker R (1992) Gravireception and graviresponses in ciliates. Acta Protozool 31: 185–214

    Google Scholar 

  • Machemer H, Deitmer JW (1985) Mechanoreception in ciliates. Progress in Sensory Physiology, vol 5. Springer, Heidelberg, pp 81–118

    Google Scholar 

  • Machemer H, Machemer-Röhnisch S (1984) Mechanical and electric correlates of mechanoreceptor activation of the ciliated tail in Paramecium. J Comp Physiol A 154: 273–278

    Google Scholar 

  • Machemer H, Machemer-Röhnisch S (1996) Is gravikinesis in Paramecium affected by swimming velocity? Festschrift Koichi Hiwatashi. Eur J Protistol (in press)

  • Machemer H, Machemer-Röhnisch S, Bräucker R, Takahashi K (1991) Gravikinesis in Paramecium: Theory and isolation of a physiological response to the natural gravity vector. J Comp Physiol A 168: 1–12

    Google Scholar 

  • Machemer H, Bräucker R, Murakami A, Yoshimura K (1993a) Graviperception in unicellular organisms: a comparative behavioural study under short-term microgravity. Microgravity Sci Technol 5: 221–231

    Google Scholar 

  • Machemer H, Machemer-Röhnisch S, Bräucker R (1993b) Velocity and graviresponses in Paramecium during adaptation and varied oxygen concentration. Arch Protistenkd 143: 285–296

    Google Scholar 

  • Machemer-Röhnisch S, Bräucker R, Machemer H (1993) Neutral gravitaxis of gliding Loxodes exposed to normal and raised gravity. J Comp Physiol A 171: 779–790

    Google Scholar 

  • Martinac B, Hildebrand E (1981) Electrically induced Ca2+ transport across the membrane of Paramecium caudatum measured by means of flow-through technique. BBA 649: 244–252

    Google Scholar 

  • Mogami Y, Pernberg J sr, Machemer H (1990) Messenger role of calcium in ciliary electromotor coupling: a reassessment. Cell Calcium 11: 665–673

    Google Scholar 

  • Monzer J (1995) Actin filaments are involved in cellular graviperception of the basidiomycete Flammulina velutipes. Eur J Cell Biol 66: 151–156

    Google Scholar 

  • Nakaoka Y, Machemer H (1990) Effects of cyclic nucleotides and intracellular Ca2+ on voltage-activated ciliary beating in Paramecium. J Comp Physiol A 166: 401–406

    Google Scholar 

  • Nakaoka Y, Tanaka H, Oosawa F (1984) Ca2+-dependent regulation of beat frequency of cilia in Paramecium. J Cell Sci 65: 223–231

    Google Scholar 

  • Ogura A, Machemer H (1980) Distribution of mechanoreceptor channels in the Paramecium surface membrane. J Comp Physiol 135: 233–242

    Google Scholar 

  • Ooya M, Mogami Y, Izumi-Kurotani A, Baba SA (1992) Gravity-induced changes in propulsion of Paramecium caudatum: a possible role of gravireception in protozoan behaviour. J Exp Biol 163: 153–167

    Google Scholar 

  • Preston RR, Saimi Y, Kung C (1992a) Calcium current activated upon hyperpolarization of Paramecium tetraurelia. J Gen Physiol 100: 233–251

    Google Scholar 

  • Preston RR, Saimi Y, Kung C (1992b) Calcium-dependent inactivation of the calcium current activated upon hyperpolarization of Paramecium tetraurelia. J Gen Physiol 100: 253–268

    Google Scholar 

  • Sachs L (1984) Angewandte Statistik. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Sievers A, Kruse S, Kuo-Huang LL, Wendt M (1989) Statoliths and microfilaments in plant cells. Planta 179: 275–278

    Google Scholar 

  • Verworn M (1889) Psychophysiologische Protistenstudien. G Fischer, Jena

    Google Scholar 

  • Volkmann (1992) Forschung unter reduzierter Schwerkraft. Teil I: Grundlagen der Gravitationsbiologie. Naturwissenschaften 79: 68–74

    Google Scholar 

  • Watzke D (1995) Schwerkraftbeantwortung von Paramecium nach Erhöhung der cytoplasmatischen Dichte durch Eisenfütterung. Diplomarbeit, Fakultät für Biologie, Ruhr-Universität Bochum

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machemer-Röhnisch, S., Machemer, H. & Bräucker, R. Electric-field effects on gravikinesis in Paramecium . J Comp Physiol A 179, 213–226 (1996). https://doi.org/10.1007/BF00222788

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222788

Key words

Navigation