Skip to main content

Gravitaxis in Euglena

  • Chapter
  • First Online:
Euglena: Biochemistry, Cell and Molecular Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 979))

Abstract

Motile microorganisms utilize a number of responses to external stimuli including light, temperature, chemicals as well as magnetic and electric fields. Gravity is a major clue to select a niche in their environment. Positive gravitaxis leads an organism down into the water column and negative gravitaxis brings it to the surface. In Euglena the precision of gravitaxis is regulated by an internal rhythm entrained by the daily light/dark cycle. This and the cooperation with phototaxis bring the cells into an optimal position in the water column. In the past a passive orientation based on a buoy mechanism has been proposed for Euglena gracilis, but now it has been proven that this flagellate possesses a physiological gravireceptor and an active orientation. Numerous experiments in space using satellites, rockets and shuttles as well as in parabolic flights have been conducted as well as in functional weightlessness (simulated microgravity) on ground-based facilities such as clinostats to characterize the gravitaxis of Euglena. The threshold for gravity perception was determined and physiological, biochemical and molecular components of the signal transduction chain have been identified. In contrast to higher plants, some algae and ciliates, Euglena does not possess sedimenting statoliths to detect the direction of the gravity vector of the Earth. The gravireceptors were found to be mechano-sensitive Ca2+-conducting ion channels thought to be located at the front end of the cell underneath the trailing flagellum. When activated by gravity-induced pressure due to sedimentation of the whole cell body, they allow a passive influx of calcium along a previously established ion gradient. The entering calcium binds to a specific calmodulin (CaM.2) which in turn activates an adenylyl cyclase producing cAMP from ATP. This cAMP is believed to activate a specific protein kinase A (PK.4), which is postulated to phosphorylate proteins inside the flagellum resulting in a bending and thus a course correction and reorientation with respect to the direction of the gravity vector. The elements of the signal transduction chain have been characterized by inhibitors and by RNAi to prove their involvement in gravitaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DCFA-DAL:

2′,7′ dichlorodihydrofluorescein diacetate

ATP:

Adenosine triphosphate

BLAST:

Basic local alignment search tool

CaM:

Calmodulin

cAMP:

Cyclic adenosine monophosphate

dsRNA:

Double-stranded RNA

EGTA:

Ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

IBM-X:

3-Isobutyl-1-methylxanthin

ISS:

International Space Station

LED:

Light emitting diode

mRNA:

Messenger RNA

NiZeMi:

Slow rotating centrifuge microscope

PAC:

Photoactivated adenylyl cyclase

PCR:

Polymerase chain reaction

PK:

Protein kinase

RNA:

Ribonucleic acid

RNAi:

RNA interference

ROS:

Reactive oxygen species

RPM:

Random Positioning Machine

rpm:

Revolutions per minute

TEXUS:

Technical experiments under microgravity

TPMP+ :

Triphenylmethyl phosphonium ion

TRP:

Transient receptor potential

UV:

Ultraviolet radiation

W7:

N-(6-Aminohexyl)-5-chlor-1-naphthalinsulfonamid

References

  • Aderhold R (1888) Beiträge zur Kenntnis richtender Kräfte bei der Bewegung niederer Organismen. Jena Ztsch Med Naturwiss 22:311–342

    Google Scholar 

  • Adler EM (2013) Bacteria under pressure, calcium channel internalization, and why cockroaches avoid glucose-baited traps. J Gen Physiol 142(1):1–2

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed H (2010) Biomonitoring of aquatic ecosystems. Ph.D. thesis, Friedrich-Alexander-Universität, Erlangen-Nürnberg

    Google Scholar 

  • Ahmed H, Häder D-P (2011) Monitoring of waste water samples using the ECOTOX biosystem and the flagellate alga Euglena gracilis. Water Air Soil Pollut 216(1–4):547–560

    Article  CAS  Google Scholar 

  • Anken RH (2006) On the role of the central nervous system in regulating the mineralisation of inner-ear otoliths of fish. Protoplasma 229(2):205–208

    Article  PubMed  Google Scholar 

  • Armitage JP, Evans CW (1981) Comparison of the carotenoid bandshift and oxonol dyes to measure membrane potential changes during chemotactic stimulation of Rhodopseudomonas sphaeroides and Escherichia coli. FEBS Lett 126:98–102

    Article  CAS  PubMed  Google Scholar 

  • Azizullah A (2011) Ecotoxicological assessment of anthropogenically produced common pollutants of aquatic environments. Ph.D. thesis, Friedrich-Alexander University, Erlangen, Germany

    Google Scholar 

  • Azizullah A, Nasir A, Richter P, Lebert M, Häder D-P (2011a) Evaluation of the adverse effects of two commonly used fertilizers, DAP and urea, on motility and orientation of the green flagellate Euglena gracilis. Environ Exp Bot 74:140–150

    Article  CAS  Google Scholar 

  • Azizullah A, Richter P, Häder D-P (2011b) Ecotoxicological evaluation of wastewater samples from Gadoon Amazai Industrial Estate (GAIE), Swabi, Pakistan. Int J Environ Sci 1(5):959–976

    CAS  Google Scholar 

  • Azizullah A, Richter P, Häder D-P (2011c) Toxicity assessment of a common laundry detergent using the freshwater flagellate Euglena gracilis. Chemosphere 84(10):1392–1400

    Article  CAS  PubMed  Google Scholar 

  • Azizullah A, Murad W, Adnan M, Ullah W, Häder D-P (2013) Gravitactic orientation of Euglena gracilis—a sensitive endpoint for ecotoxicological assessment of water pollutants. Front Environ Sci 1:4

    Article  Google Scholar 

  • Balleza D, Gómez-Lagunas F (2009) Conserved motifs in mechanosensitive channels MscL and MscS. Eur Biophys J 38(7):1013–1027

    Article  PubMed  Google Scholar 

  • Barlow PW (1995) Gravity perception in plants: a multiplicity of systems derived by evolution? Plant Cell Environ 18:951–962

    Article  CAS  PubMed  Google Scholar 

  • Batschelet E (1981) Circular Statistics in Biology. Academic Press, London, New York

    Google Scholar 

  • Bean B (1984) Microbial geotaxis. In: Colombetti G, Lenci F (eds) Membranes and sensory transduction. Plenum Press, London, pp 163–198

    Chapter  Google Scholar 

  • Bhaskaran S, Jagtap SS, Vidyasagar PB (2009) Life and gravity. Biophys Rev Lett 4(04):299–318

    Article  Google Scholar 

  • Björkman T (1992) Perception of gravity by plants. Adv Space Res 12:195–201

    Article  PubMed  Google Scholar 

  • Blancaflor EB (2013) Regulation of plant gravity sensing and signaling by the actin cytoskeleton. Am J Bot 100(1):143–152

    Article  CAS  PubMed  Google Scholar 

  • Bock O, Girgenrath M, Carnahan H (2007) Grasping of virtual objects is affected by near-weightlessness of parabolic flight. J Gravit Physiol 13:1–6

    Google Scholar 

  • Bolige A, Goto K (2007) High irradiance responses involving photoreversible multiple photoreceptors as related to photoperiodic induction of cell division in Euglena. J Photochem Photobiol B Biol 86:109–120

    Article  CAS  Google Scholar 

  • Bouck GB (2012) Flagella and the cell surface. Physiol 3:29

    Google Scholar 

  • Bräucker R, Cogoli A, Hemmersbach R (2001) Graviperception and graviresponse at the cellular level. In: Baumstark-Khan C, Horneck G (eds) Astrobiology: the Quest for the Conditions of Life. Springer, Berlin, pp 284–297

    Google Scholar 

  • Braun M, Limbach C (2006) Rhizoids and protonemata of characean algae: model cells for research on polarized growth and plant gravity sensing. Protoplasma 229(2):133–142

    Article  CAS  PubMed  Google Scholar 

  • Briegleb W (1992) Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull 5:23–30

    CAS  PubMed  Google Scholar 

  • Brungs S, Egli M, Wuest SL, Christianen PCM, van Loon JWA, Ngo Anh TJ, Hemmersbach R (2016) Facilities for simulation of microgravity in the ESA ground-based facility programme. Micrograv Sci Techn 28(3):191–203

    Article  Google Scholar 

  • Buttinoni I, Volpe G, Kümmel F, Volpe G, Bechinger C (2012) Active Brownian motion tunable by light. J Phys Condens Matter 24(28):284129

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Nagel DJ, Zhou Q, Cygnar KD, Zhao H, Li F, Pi X, Knight PA, Yan C (2015) Role of cAMP-phosphodiesterase 1C signaling in regulating growth factor receptor stability, vascular smooth muscle cell growth, migration, and neointimal hyperplasia. Circ Res 116(7):1120–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callow ME, Callow JA, Pickett-Heaps JD, Wetherbee R (1997) Primary adhesion of Enteromorpha (Chlorophyta, Ulvales) propagules: quantitative settlement studies and video microscopy. J Phycol 33(6):938–947

    Article  Google Scholar 

  • Cameron R, Baillie GS (2012) cAMP-specific phosphodiesterases: modulation, inhibition, and activation. In: Botana LM, Loza M (eds) Therapeutic Targets: Modulation, Inhibition, and Activation. Wiley, Hoboken, NJ, p 1

    Chapter  Google Scholar 

  • Chang SC, Kaufman PB (2000) Effects of staurosporine, okadaic acid and sodium fluoride on protein phophorylation in graviresponding oat shoot pulvini. Plant Physiol Biochem 38:315–323

    Article  CAS  PubMed  Google Scholar 

  • Clegg MR, Maberly SC, Jones RI (2003) Chemosensory behavioural response of freshwater phytoplanktonic flagellates. Plant Cell Environ 27(1):123–135

    Article  Google Scholar 

  • Cogoli A (1996) Biology under microgravity conditions in Spacelab International Microgravity Laboratory 2 (IML-2). J Biotechnol 47(2–3):67–70

    Article  CAS  PubMed  Google Scholar 

  • Daiker V, Häder D-P, Lebert M (2010) Molecular characterization of calmodulins involved in the signal transduction chain of gravitaxis in Euglena. Planta 231(5):1229–1236

    Article  CAS  PubMed  Google Scholar 

  • Daiker V, Häder D-P, Richter RP, Lebert M (2011) The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis. Planta 233:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray

    Google Scholar 

  • Davenport CB (1908) Experimental Morphology. Macmillan Publishing, New York

    Book  Google Scholar 

  • Dennison DS, Shropshire W Jr (1984) The gravireceptor of Phycomyces. Its development following gravity exposure. J Gen Physiol 84:845–859

    Article  CAS  PubMed  Google Scholar 

  • Dryl S (1974) Behavior and motor response of Paramecium. In: van Wagtendonk WJ (ed) Paramecium: a Current Survey. Elsevier Scientific, Amsterdam, pp 165–218

    Google Scholar 

  • Eggersdorfer B, Häder D-P (1991a) Phototaxis, gravitaxis and vertical migrations in the marine dinoflagellate Prorocentrum micans. FEMS Microbiol Ecol 85:319–326

    Article  Google Scholar 

  • Eggersdorfer B, Häder D-P (1991b) Phototaxis, gravitaxis and vertical migrations in the marine dinoflagellates, Peridinium faeroense and Amphidinium caterea. Acta Protozool 30:63–71

    Google Scholar 

  • Ekelund NGA, Aronsson KA (2004) Assessing Euglena gracilis motility using the automatic biotest ECOTOX application to evaluate water toxicity (cadmium). Vatten 60:77–83

    CAS  Google Scholar 

  • Favaro E, Granata R, Miceli I, Baragli A, Settanni F, Perin PC, Ghigo E, Camussi G, Zanone M (2012) The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditions, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK) 1/2 and cAMP/protein kinase A (PKA) signalling pathways. Diabetologia 55(4):1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenchel T, Finlay BJ (1984) Geotaxis in the ciliated protozoon Loxodes. J Exp Biol 110:17–33

    Google Scholar 

  • Fenchel T, Finlay BJ (1986) The structure and function of Müller vesicles in loxodid ciliates. J Protozool 33:69–76

    Article  Google Scholar 

  • Fenchel T, Finlay BJ (1990) Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiol Ecol 74:269–276

    Article  Google Scholar 

  • Fiedler B, Börner T, Wilde A (2005) Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors. Photochem Photobiol 81(6):1481–1488

    Article  CAS  PubMed  Google Scholar 

  • Finichiu PG, James AM, Larsen L, Smith RA, Murphy MP (2013) Mitochondrial accumulation of a lipophilic cation conjugated to an ionisable group depends on membrane potential, pH gradient and pK a: implications for the design of mitochondrial probes and therapies. J Bioenerg Biomembr 45(1–2):165–173

    Article  CAS  PubMed  Google Scholar 

  • Finlay BJ, Tellez C, Esteban G (1993) Diversity of free-living ciliates in the sandy sediment of a Spanish stream in winter. J Gen Microbiol 139:2855–2863

    Article  Google Scholar 

  • Fraenkel GS, Gunn DL (1961) The Orientation of Animals (Kineses, Taxes and Compass Reactions). Dover Publications, New York

    Google Scholar 

  • Friedrich ULD, Joop O, Pütz C, Willich G (1996) The slow rotating centrifuge microscope NIZEMI—a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science. J Biotechnol 47:225–238

    Article  CAS  PubMed  Google Scholar 

  • Fukui K, Asai H (1985) Negative geotactic behavior of Paramecium caudatum is completely described by the mechanism of buoyancy-oriented upward swimming. Biophys J 47:479–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebauer M, Watzke D, Machemer H (1999) The gravikinetic response of Paramecium is based on orientation-dependent mechanotransduction. Naturwissenschaften 86:352–356

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt K (1913) Beitrag zur Physiologie von Closterium. Dissertation, Friedrich-Schiller-Universität Jena

    Google Scholar 

  • Gitelman SE, Witman GB (1980) Purification of calmodulin from Chlamydomonas: calmodulin occurs in cell bodies and flagella. J Cell Biol 98:764–770

    Article  Google Scholar 

  • Grolig F, Herkenrath H, Pumm T, Gross A, Galland P (2004) Gravity susception by buoyancy: floating lipid globules in sporangiophores of Phycomyces. Planta 218:658–667

    Article  CAS  PubMed  Google Scholar 

  • Grolig F, Döring M, Galland P (2006) Gravisusception by buoyancy: a mechanism ubiquitous among fungi? Protoplasma 229(2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Grosse J, Wehland M, Pietsch J, Ma X, Ulbrich C, Schulz H, Saar K, Hübner N, Hauslage J, Hemmersbach R (2012) Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells. FASEB J 26(2):639–655

    Article  CAS  PubMed  Google Scholar 

  • Häder D-P (1988) Ecological consequences of photomovement in microorganisms. J Photochem Photobiol B Biol 1:385–414

    Article  Google Scholar 

  • Häder D-P (1990) Tracking of flagellates by image analysis. In: Alt W, Hoffmann G (eds) Biological Motion, Proceedings Königswinter 1989. Springer, Berlin, pp 343–360

    Google Scholar 

  • Häder D-P (1991) Strategy of orientation in flagellates. In: Riklis E (ed) Photobiology. The Science and its Applications. Plenum Press, New York, pp 497–510

    Google Scholar 

  • Häder D-P (1992) Real-time tracking of microorganisms. In: Häder D-P (ed) Image Analysis in Biology. CRC Press, Boca Raton, pp 289–313

    Google Scholar 

  • Häder D-P (1994a) Gravitaxis in the flagellate Euglena gracilis—results from Nizemi, clinostat and sounding rocket flights. J Gravit Physiol 1:P82–P84

    PubMed  Google Scholar 

  • Häder D-P (1994b) Real-time tracking of microorganisms. Binary 6:81–86

    Google Scholar 

  • Häder D-P (1996) NIZEMI-Experiments on the slow rotating centrifuge microscope during the IML-2 mission. J Biotechnol 47:223–224

    Article  PubMed  Google Scholar 

  • Häder D-P (1997a) Gravitaxis in flagellates. Biol Bull 192:131–133

    Article  PubMed  Google Scholar 

  • Häder D-P (1997b) Vertical migration and distribution of primary producers in aquatic ecosystems—the effects of enhanced solar UVB. Photochem Photobiol 65(2):263–264

    Article  Google Scholar 

  • Häder D-P (1999) Gravitaxis in unicellular microorganisms. Adv Space Res 24:843–850

    Article  PubMed  Google Scholar 

  • Häder D-P (2000) Graviperzeption in Pflanzen und Mikroorganismen. In: Keller MH, Sahm PR (eds) Bilanzsymposium Forschung unter Weltraumbedingungen, 21–23 September 1998. Wissenschaftliche Projektführung, Norderney, pp 633–641

    Google Scholar 

  • Häder D-P (2003) Wie unterscheiden Einzeller oben und unten—Beispiele für biologische Experimente im Weltraumlabor. In: Nordmeier V (ed) Didaktik der Physik-Beiträge der Frühjahrstagung der DPG-Augsburg 2003. Lehmanns Media, Berlin, pp 1–5

    Google Scholar 

  • Häder D-P (2010) Rock ‘n’ Roll—Wie Mikroorganismen die Schwerkraft spüren. In: Spektrum der Wissenschaft Extra, Schwerelos Europa forscht im Weltall, pp 114–120

    Google Scholar 

  • Häder D-P, Hemmersbach R (1997) Graviperception and graviorientation in flagellates. Planta 203:7–10

    Article  Google Scholar 

  • Häder D-P, Lebert M (1985) Real time computer-controlled tracking of motile microorganisms. Photochem Photobiol 42:509–514

    Article  PubMed  Google Scholar 

  • Häder D-P, Lebert M (1998) Mechanism of gravitactic signal perception and signal transduction of Euglena gracilis. Microgravity News 11:14

    Google Scholar 

  • Häder D-P, Lebert M (2000) Real-time tracking of microorganisms. In: Häder D-P (ed) Image Analysis: Methods and Applications. CRC Press, Boca Raton, pp 393–422

    Google Scholar 

  • Häder D-P, Lebert M (2001a) Einzeller als Modelle für das Verständnis der Wirkung der Gravitation auf biologische Systeme. In: Rahmann H, Hirsch KA (eds) Mensch–Leben–Schwerkraft–Kosmos. Verlag Günter Heimbach, Stuttgart, pp 150–161

    Google Scholar 

  • Häder D-P, Lebert M (2001b) Graviperception and gravitaxis in algae. Adv Space Res 27:861–870

    Article  PubMed  Google Scholar 

  • Häder D-P, Lebert M (2002) Graviorientation in flagellates. In: Proceedings 2nd China-Germany Workshop on Microgravity Sciences, 1–3 September 2002. National Microgravity Laboratory, Chinese Academy of Sciences, Dunhuang, China, pp 189–194

    Google Scholar 

  • Häder D-P, Lebert M (2009) Photoorientation in photosynthetic flagellates. In: Jin T, Hereld D (eds) Methods in Molecular Biology, vol 571. Humana Press, New York, pp 51–65

    Google Scholar 

  • Häder D-P, Liu SM (1990a) Effects of artificial and solar UV-B radiation on the gravitactic orientation of the dinoflagellate, Peridinium gatunense. FEMS Microbiol Ecol 73:331–338

    Article  Google Scholar 

  • Häder D-P, Liu SM (1990b) Motility and gravitactic orientation of the flagellate, Euglena gracilis, impaired by artificial and solar UV-B radiation. Curr Microbiol 21:161–168

    Article  PubMed  Google Scholar 

  • Häder D-P, Vogel K (1960) Graviorientation in photosynthetic flagellates. In: Proceedings of the Fourth European Symposium on Life Science Research in Space (ESA SP-307), pp 521–526

    Google Scholar 

  • Häder D-P, Vogel K (1991) Simultaneous tracking of flagellates in real time by image analysis. J Math Biol 30:63–72

    Article  Google Scholar 

  • Häder D-P, Liu SM, Häder M, Ullrich W (1990a) Photoorientation, motility and pigmentation in a freshwater Peridinium affected by ultraviolet radiation. Gen Physiol Biophys 9:361–371

    PubMed  Google Scholar 

  • Häder D-P, Vogel K, Schäfer J (1990b) Responses of the photosynthetic flagellate, Euglena gracilis, to microgravity. Appl Micrograv Techn 3:110–116

    Google Scholar 

  • Häder D-P, Liu SM, Kreuzberg K (1991a) Orientation of the photosynthetic flagellate, Peridinium gatunense, in hypergravity. Curr Microbiol 22:165–172

    Article  PubMed  Google Scholar 

  • Häder D-P, Reinecke E, Vogel K, Kreuzberg K (1991b) Responses of the photosynthetic flagellate, Euglena gracilis, to hypergravity. Eur Biophys J 20:101–107

    Article  PubMed  Google Scholar 

  • Häder D-P, Rosum A, Schäfer J, Hemmersbach R (1995) Gravitaxis in the flagellate Euglena gracilis is controlled by an active gravireceptor. J Plant Physiol 146:474–480

    Article  PubMed  Google Scholar 

  • Häder D-P, Rosum A, Schäfer J, Hemmersbach R (1996) Graviperception in the flagellate Euglena gracilis during a shuttle space flight. J Biotechnol 47:261–269

    Article  PubMed  Google Scholar 

  • Häder D-P, Porst M, Tahedl H, Richter P, Lebert M (1997) Gravitactic orientation in the flagellate Euglena gracilis. Microgravity Sci Technol 10:53–57

    Google Scholar 

  • Häder D-P, Lebert M, Richter P (1999) Gravitaxis and graviperception in flagellates and ciliates. In: Proceedings 14th ESA Symposium on European Rocket and Balloon Programmes and Related Research (ESA SP-437), Potsdam, Germany, pp 479–486

    Google Scholar 

  • Häder D-P, Lebert M, Richter P, Ntefidou M (2003) Gravitaxis and graviperception in flagellates. Adv Space Res 31(10):2181–2186

    Article  PubMed  Google Scholar 

  • Häder D-P, Hemmersbach R, Lebert M (2005a) Gravity and the Behavior of Unicellular Organisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Häder D-P, Richter P, Daiker V, Lebert M (2005b) Molecular transduction chain for graviorientation in flagellates. ELGRA News 24:74

    Google Scholar 

  • Häder D-P, Richter P, Ntefidou M, Lebert M (2005c) Gravitational sensory transduction chain in flagellates. Adv Space Res 36:1182–1188

    Article  CAS  Google Scholar 

  • Häder D-P, Richter P, Lebert M (2006) Signal transduction in gravisensing of flagellates. Signal Transduct 6:422–431

    Article  CAS  Google Scholar 

  • Häder D-P, Richter P, Schuster M, Daiker V, Lebert M (2009) Molecular analysis of the graviperception signal transduction in the flagellate Euglena gracilis: involvement of a transient receptor potential-like channel and a calmodulin. Adv Space Res 43(8):1179–1184

    Article  CAS  Google Scholar 

  • Häder D-P, Faddoul J, Lebert M, Richter P, Schuster M, Richter R, Strauch SM, Daiker V, Sinha R, Sharma N (2010) Investigation of gravitaxis and phototaxis in Euglena gracilis. In: Sinha R, Sharma NK, Rai AK (eds) Advances in Life Sciences. IK International Publishing House, New Delhi, pp 117–131

    Google Scholar 

  • Haugland RP (1997) Handbook of Fluorescent Probes and Research Chemicals. Molecular Probes, Eugene, Oregon

    Google Scholar 

  • Haupt W (1962) Geotaxis. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 17/2. Springer, Berlin, pp 390–395

    Google Scholar 

  • Hemmersbach R, Braun M (2006) Gravity-sensing and gravity-related signaling pathways in unicellular model systems of protists and plants. Signal Transduct 6:432–442

    Article  CAS  Google Scholar 

  • Hemmersbach R, Donath R (1995) Gravitaxis of Loxodes and Paramecium. Eur J Protistol 31:433

    Google Scholar 

  • Hemmersbach R, Häder D-P (1999) Graviresponses of certain ciliates and flagellates. FASEB J 13:S69–S75

    CAS  PubMed  Google Scholar 

  • Hemmersbach R, Voormanns R, Briegleb W, Rieder N, Häder D-P (1996) Influence of accelerations on the spatial orientation of Loxodes and Paramecium. J Biotechnol 47:271–278

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbach R, Voormanns R, Bromeis B, Schmidt N, Rabien H, Ivanova K (1998) Comparative studies of the graviresponses of Paramecium and Loxodes. Adv Space Res 21:1285–1289

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbach R, Volkmann D, Häder D-P (1999a) Graviorientation in protists and plants. J Plant Physiol 154:1–15

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbach R, Voormanns R, Häder D-P (1999b) Graviresponses in Paramecium biaurelia under different accelerations: studies on the ground and in space. J Exp Biol 390:2199–2205

    Google Scholar 

  • Hemmersbach R, Anken RH, Lebert M (2011) Gravitational biology. In: Encyclopedia of Astrobiology. Springer, Berlin, pp 688–692

    Google Scholar 

  • Hemmersbach R, Simon A, Waßer K, Hauslage J, Christianen PC, Albers PW, Lebert M, Richter P, Alt W, Anken R (2014) Impact of a high magnetic field on the orientation of gravitactic unicellular organisms—a critical consideration about the application of magnetic fields to mimic functional weightlessness. Astrobiology 14(3):205–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemmersbach-Krause R, Häder D-P (1990) Negative gravitaxis (geotaxis) of Paramecium—demonstrated by image analysis. Appl Micrograv Techn 4:221–223

    Google Scholar 

  • Hemmersbach-Krause R, Häder D-P, Köhler M, Perdigao J, Briegleb W (1990) Cellular functions of Paramecium under different gravity conditions. In: Proceedings of the 4th European Symposium on Life Sciences Research in Space, ESA SP-307, Trieste, Italy, pp 285–290

    Google Scholar 

  • Hemmersbach-Krause R, Briegleb W, Häder D-P (1991a) Dependence of gravitaxis in Paramecium on oxygen. Eur J Protistol 27:278–282

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbach-Krause R, Briegleb W, Häder D-P, Plattner H (1991b) Gravity effects on Paramecium cells: an analysis of a possible sensory function of trichocysts and of simulated weightlessness of trichocyst exocytosis. Eur J Protistol 27:85–92

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbach-Krause R, Briegleb W, Häder D-P (1992) Swimming behavior of Paramecium—first results with the low-speed centrifuge microscope (NIZEMI). Adv Space Res 12:113–116

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbach-Krause R, Briegleb W, Vogel K, Häder D-P (1993) Swimming velocity of Paramecium under the conditions of weightlessness. Acta Protozool 32:229–236

    CAS  PubMed  Google Scholar 

  • Hemmersbach-Krause R, Briegleb W, Häder D-P, Vogel K, Klein S, Mulisch M (1994) Protozoa as model systems for the study of cellular responses to altered gravity conditions. Adv Space Res 14:49–60

    Article  CAS  PubMed  Google Scholar 

  • Hensel W, Sievers A (1981) Induction of gravity-dependent plasmatic responses in root statocytes by short time contact between amyloplasts and the distal endoplasmic reticulum complex. Planta 153:303–307

    Article  CAS  PubMed  Google Scholar 

  • Herranz R, Anken R, Boonstra J, Braun M, Christianen PC, de Geest M, Hauslage J, Hilbig R, Hill RJ, Lebert M (2013) Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13(1):1–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill NA, Häder D-P (1997) A biased random walk for the trajectories of swimming micro-organisms. J Theor Biol 186:503–526

    Article  CAS  PubMed  Google Scholar 

  • Hock B, Häder D-P (2006) Graviresponses in fungi and slime molds. Signal Transduct 6:443–448

    Article  CAS  Google Scholar 

  • Hopkins JT (1965) Some light-induced changes in behaviour and cytology of an estuarine mud-flat diatom. In: Bainbridge R (ed) Light as an Ecological Factor. Blackwell Scientific Publishing, Oxford, pp 335–358

    Google Scholar 

  • Hou G, Kramer VL, Wang YS, Chen R, Perbal G, Gilroy S, Blancaflor EB (2004) The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39(1):113–125

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Wang S, Guo L, Xie P (2014) Effects of the proximal factors on the diel vertical migration of zooplankton in a plateau meso-eutrophic Lake Erhai, China. J Limnol 73(2):375–386

    Article  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida C, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Jarman AP, Groves AK (2013) The role of Atonal transcription factors in the development of mechanosensitive cells. Semin Cell Dev Biol 24(5):438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings HS (1906) Behavior of the Lower Organisms. Columbia University Press, New York

    Book  Google Scholar 

  • Joop O, Kreuzberg K, Treichel R (1989) The slow-rotating centrifuge microscope (NIZEMI). ASGSB Bull 3:55

    Google Scholar 

  • Josef K, Saranak J, Foster KW (2005) Ciliary behavior of a negatively phototactic Chlamydomonas reinhardtii. Cell Motil Cytoskeleton 61:97–111

    Article  PubMed  Google Scholar 

  • Kamphuis A (1999) Digitale Pfadanalyse am Beispiel der Schwerkraftausrichtung von Euglena gracilis in Flachküvetten (in German). Dissertation, Rheinische-Friedrich-Wilhelms-Universität Bonn

    Google Scholar 

  • Karnkowska-Ishikawa A, Milanowski R, Triemer RE, Zakryś B (2012) Taxonomic revisions of morphologically similar species from two euglenoid genera: Euglena (E. granulata and e. velata) and Euglenaria (Eu. anabaena, Eu. caudata, and Eu. clavata). J Phycol 48(3):729–739

    Article  PubMed  Google Scholar 

  • Kelly MO, Leopold AC (1992) Springback and diagravitropism in merit corn roots. Plant Physiol 99:632–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler JO (2007) The dynamics of unicellular swimming organisms. Gravitat Space Res 4(2)

    Google Scholar 

  • Kessler JO, Hill NA (1997) Complementarity of physics, biology and geometry in the dynamics of swimming micro-organisms. In: Flyvbjerg H, Hertz J, Jensen MH, Mouritsen OG, Sneppen K (eds) Physics of Biological Systems, vol 480. Springer, Berlin, pp 325–340

    Google Scholar 

  • Kessler JO, Hill NA, Häder D-P (1992) Orientation of swimming flagellates by simultaneously acting external factors. J Phycol 28:816–822

    Article  Google Scholar 

  • Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Kiss J (2014) Plant biology in reduced gravity on the moon and Mars. Plant Biol 16(s1):12–17

    Article  PubMed  Google Scholar 

  • Kiyota M, Numayama N, Goto K (2006) Circadian rhythms of the L-ascorbic acid level in Euglena and spinach. J Photochem Photobiol B 84(3):197–203

    Article  CAS  PubMed  Google Scholar 

  • Köhler O (1921) Über die Geotaxis von Paramecium. Verhandl Dtsche Zool Ges 26:69–71

    Google Scholar 

  • Krause M (1999) Elektrophysiologie, Mechanosensitivität und Schwerkraftbeantwortung von Bursaria truncatella. Diploma thesis, Fakultät für Biologie der Ruhr-Universität Bochum

    Google Scholar 

  • Krause M, Bräucker R, Hemmersbach R (2006) Graviresponses of Paramecium biaurelia during parabolic flights. Protoplasma 229(2):109–116

    Article  PubMed  Google Scholar 

  • Krause M, Bräucker R, Hemmersbach R (2010) Gravikinesis in Stylonychia mytilus is based on membrane potential changes. J Exp Biol 213(1):161–171

    Article  PubMed  Google Scholar 

  • Kühnel-Kratz C, Häder D-P (1993) Real time three-dimensional tracking of ciliates. J Photochem Photobiol B Biol 19:193–200

    Article  Google Scholar 

  • Kuznicki L (1968) Behavior of Paramecium in gravity fields. I. Sinking of immobilized specimens. Acta Protozool 6:109–117

    Google Scholar 

  • Lebert M, Häder D-P (1996) How Euglena tells up from down. Nature 379:590

    Article  CAS  PubMed  Google Scholar 

  • Lebert M, Häder D-P (1999a) Image analysis: a versatile tool for numerous applications. GIT Imag Microsc 1:5–6

    Google Scholar 

  • Lebert M, Häder D-P (1999b) Negative gravitactic behavior of Euglena gracilis can not be described by the mechanism of buoyancy-oriented upward swimming. Adv Space Res 24:851–860

    Article  CAS  PubMed  Google Scholar 

  • Lebert M, Richter P, Porst M, Häder D-P (1996) Mechanism of gravitaxis in the flagellate Euglena gracilis. In: Proceedings of the 12th C.E.B.A.S.Workshops. Annual Issue 1996, Ruhr-University of Bochum, Bochum, Germany, pp 225–234

    Google Scholar 

  • Lebert M, Richter P, Häder D-P (1997) Signal perception and transduction of gravitaxis in the flagellate Euglena gracilis. J Plant Physiol 150:685–690

    Article  CAS  Google Scholar 

  • Lebert M, Porst M, Häder D-P (1999a) Circadian rhythm of gravitaxis in Euglena gracilis. J Plant Physiol 155:344–349

    Article  CAS  PubMed  Google Scholar 

  • Lebert M, Porst M, Richter P, Häder D-P (1999b) Physical characterization of gravitaxis in Euglena gracilis. J Plant Physiol 155:338–343

    Article  CAS  PubMed  Google Scholar 

  • Löfke C (2011) Einfluss von Gibberellin auf den Gravitropismus der Wurzel durch Regulation der PIN-Stabilität. Dissertation, Georg-August Universität, Göttingen

    Google Scholar 

  • Lohmann KJ, Lohmann CMF, Ehrhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. These migratory animals have their own equivalent of a global positioning system. Nature 428(6986):909–910

    Article  CAS  PubMed  Google Scholar 

  • Machemer H, Bräucker R (1992) Gravireception and graviresponses in ciliates. Acta Protozool 31:185–214

    CAS  PubMed  Google Scholar 

  • Machemer H, Machemer-Röhnisch S (1996) Is gravikinesis in Paramecium affected by swimming velocity? Eur J Protistol 32:90–93

    Article  Google Scholar 

  • Machemer H, Machemer-Röhnisch S, Bräucker R, Takahashi K (1991) Gravikinesis in Paramecium: theory and isolation of a physiological response to the natural gravity vector. J Comp Physiol A 168:1–12

    Article  Google Scholar 

  • Machemer H, Nagel U, Bräucker R (1997) Assessment of g-dependent cellular gravitaxis: determination of cell orientation from locomotion track. J Theor Biol 185:201–211

    Article  CAS  PubMed  Google Scholar 

  • Machemer-Röhnisch S, Bräucker R, Machemer H (1998) Graviresponses of gliding and swimming Loxodes using step transition to weightlessness. J Eukaryot Microbiol 45:411–418

    Article  PubMed  Google Scholar 

  • Machemer-Röhnisch S, Nagel U, Machemer H (1999) A gravity-induced regulation of swimming speed in Euglena gracilis. J Comp Physiol A 185:517–527

    Article  Google Scholar 

  • Manieri P, Brinckmann E, Brillouet C (1996) The BIORACK facility and its performance during the IML-2 Spacelab mission. J Biotechnol 47:71–82

    Article  CAS  PubMed  Google Scholar 

  • Maree AFM, Panfilov AV, Hogeweg P (1999) Migration and thermotaxis of Dictyostelium discoideum slugs, a model study. J Theor Biol 199:297–309

    Article  CAS  Google Scholar 

  • Massart J (1891) Recherches sur les organismes inférieurs (1). Academie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique 22:148–167

    Google Scholar 

  • McLachlan DH, Underwood GJ, Taylor AR, Brownlee C (2012) Calcium release from intracellular stores is necessary for the photophobic response in the benthic diatom Navicula perminuta (Bacillariophyceae). J Phycol 48(3):675–681

    Article  CAS  PubMed  Google Scholar 

  • Means AR (2013) Molecular mechanisms of action of calmodulin. In: Proceedings of the 1987 Laurentian Hormone Conference. Recent Progress in Hormone Research. Academic Press, p 223

    Google Scholar 

  • Miller MS, Keller TS (2006) Drosophila melanogaster (fruit fly) locomotion during the microgravity and hypergravity portions of parabolic flight. J Gravit Physiol 13:35–48

    Google Scholar 

  • Mittag M (2001) Circadian rhythms in microalgae. Int Rev Cytol 206:213–247

    Article  CAS  PubMed  Google Scholar 

  • Moore A (1903) Some facts concerning geotropic gatherings of paramecia. Am J Phys 9:238–244

    Google Scholar 

  • Naccache PH (1985) Neutrophil activation and calmodulin antagonists. In: Hidaka H, Hartshorne DJ (eds) Calmodulin Antagonists and Cellular Physiology. Academic Press, Orlando, pp 149–160

    Chapter  Google Scholar 

  • Nagel U (1993) Elektrische Eigenschaften und elektromotorische Kopplung im Verhalten von Loxodes striatus. Diploma thesis, Faculty of Biology, Ruhr-University Bochum

    Google Scholar 

  • Nasir A, Strauch S, Becker I, Sperling A, Schuster M, Richter P, Weißkopf M, Ntefidou M, Daiker V, An Y (2014) The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. Plant Biol (Stuttg) 16(s1):113–119

    Article  Google Scholar 

  • Neugebauer DC, Machemer-Röhnisch S, Nagel U, Bräucker R, Machemer H (1998) Evidence of central and peripheral gravireception in the ciliate Loxodes striatus. J Comp Physiol A 183:303–311

    Article  Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflügers Arch—Eur J Physiol 464(5):425–458

    Article  CAS  Google Scholar 

  • Ntefidou M, Richter P, Streb C, Lebert M, Häder D-P (2002a) High light exposure leads to a sign change in gravitaxis of the flagellate Euglena gracilis. J Gravit Physiol 9(1):277–278

    Google Scholar 

  • Ntefidou M, Richter P, Streb C, Lebert M, Häder D-P (2002b) High light exposure leads to a sign change in gravitaxis of the flagellate Euglena gracilis. In: ESA SP-501: 8th European Symposium on Life Sciences Research in Space: Life in Space for Life on Earth. 23rd Annual International Gravitational Physiology Meeting. Karolinska Institutet, Stockholm, Sweden, pp 301–302

    Google Scholar 

  • Ohata K, Murakami T, Miwa I (1997) Circadian rhythmicity of negative gravitaxis in Paramecium bursaria. Zool Sci 14(Suppl):58

    Google Scholar 

  • Panina S, Stephan A, la Cour JM, Jacobsen K, Kallerup LK, Bumbuleviciute R, Knudsen KV, Sánchez-González P, Villalobo A, Olesen UH (2012) Significance of calcium binding, tyrosine phosphorylation, and lysine trimethylation for the essential function of calmodulin in vertebrate cells analyzed in a novel gene replacement system. J Biol Chem 287(22):18173–18181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peacock MB, Kudela RM (2014) Evidence for active vertical migration by two dinoflagellates experiencing iron, nitrogen, and phosphorus limitation. Limnol Oceanogr 59(3):660–673

    Article  CAS  Google Scholar 

  • Penard E (1917) Le genre Loxodes. Rev Suisse Zool 25:453–489

    Google Scholar 

  • Pettersson M, Ekelund NGA (2006) Effects of the herbicides roundup and Avans on Euglena gracilis. Arch Environ Contam Toxicol 50:175–181

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer W (1904) Pflanzenphysiologie Bd. 2. In: Ein Handbuch der Lehre vom Stoffwechsel und Kraftwechsel in der Pflanze. Leipzig

    Google Scholar 

  • Piazena H, Häder D-P (1995) Vertical distribution of phytoplankton in coastal waters and its detection by backscattering measurements. Photochem Photobiol 62:1027–1034

    Article  CAS  Google Scholar 

  • Platt JB (1899) On the specific gravity of Spirostomum, Paramecium and the tadpole in relation to the problem of geotaxis. Am Nat 33:31

    Article  Google Scholar 

  • Porst M (1998) Euglena gracilis: Langzeitversuche in artifiziellen Ökosystemen und Untersuchungen zur Gravitaxis. Dissertation, Friedrich-Alexander-University, Erlangen-Nürnberg

    Google Scholar 

  • Rahmann H, Hilbig R, Flemming J, Slenzka K (1996) Influence of long-term altered gravity on the swimming performance of developing cichlid fish: including results from the 2nd German spacelab mission D-2. Adv Space Res 17:121–124

    Article  CAS  PubMed  Google Scholar 

  • Raymont JE (2014) Plankton & Productivity in the Oceans, vol 1. Phytoplankton, Elsevier

    Google Scholar 

  • Renart MF, Sebastian J, Mato JM (1981) Adenylate cyclase activity in permeabilized cells from Dictyostelium discoideum. Cell Biol Int Rep 5:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Rhiel E, Häder D-P, Wehrmeyer W (1988) Diaphototaxis and gravitaxis in a freshwater Cryptomonas. Plant Cell Physiol 29:755–760

    CAS  PubMed  Google Scholar 

  • Richter P, Lebert M, Korn R, Häder D-P (2001a) Possible involvement of the membrane potential in the gravitactic orientation of Euglena gracilis. J Plant Physiol 158:35–39

    Article  CAS  PubMed  Google Scholar 

  • Richter P, Lebert M, Tahedl H, Häder D-P (2001b) Calcium is involved in the gravitactic orientation in colorless flagellates. J Plant Physiol 158:689–697

    Article  CAS  PubMed  Google Scholar 

  • Richter P, Ntefidou M, Streb C, Lebert M, Häder D-P (2002a) Cellular perception and transduction mechanisms of gravity in unicellular organisms. Curr Topics Plant Biol 3:143–154

    CAS  Google Scholar 

  • Richter P, Ntefidou M, Streb C, Lebert M, Häder D-P (2002b) Physiological characterization of gravitaxis in Euglena gracilis. J Gravit Physiol 9:279–280

    Google Scholar 

  • Richter PR, Ntefidou M, Streb C, Faddoul J, Lebert M, Häder D-P (2002c) High light exposure leads to a sign change of gravitaxis in the flagellate Euglena gracilis. Acta Protozool 41:343–351

    Google Scholar 

  • Richter PR, Schuster M, Wagner H, Lebert M, Häder D-P (2002d) Physiological parameters of gravitaxis in the flagellate Euglena gracilis obtained during a parabolic flight campaign. J Plant Physiol 159:181–190

    Article  CAS  PubMed  Google Scholar 

  • Richter P, Börnig A, Streb C, Ntefidou M, Lebert M, Häder D-P (2003a) Effects of increased salinity on gravitaxis in Euglena gracilis. J Plant Physiol 160:651–656

    Article  CAS  PubMed  Google Scholar 

  • Richter P, Ntefidou M, Streb C, Lebert M, Häder D-P (2003b) The role of reactive oxygen species (ROS) in signaling of light stress. Recent Res Develop Biochem 4:957–970

    CAS  Google Scholar 

  • Richter PR, Schuster M, Lebert M, Häder D-P (2003c) Gravitactic signal transduction elements in Astasia longa investigated during parabolic flights. Microgravity Sci Technol 14(3):17–24

    Article  PubMed  Google Scholar 

  • Richter PR, Streb C, Ntefidou M, Lebert M, Häder D-P (2003d) High light-induced sign change of gravitaxis in the flagellate Euglena gracilis is mediated by reactive oxygen species. Acta Protozool 42:197–204

    CAS  Google Scholar 

  • Richter PR, Schuster M, Meyer I, Lebert M, Häder D-P (2006) Indications for acceleration-dependent changes of membrane potential in the flagellate Euglena gracilis. Protoplasma 229:101–108

    Article  CAS  PubMed  Google Scholar 

  • Richter PR, Häder D-P, Gonçalves RJ, Marcoval MA, Villafañe VE, Helbling EW (2007) Vertical migration and motility responses in three marine phytoplankton species exposed to solar radiation. Photochem Photobiol 83(4):810–817

    Article  CAS  PubMed  Google Scholar 

  • Richter PR, Strauch SM, Ntefidou M, Schuster M, Daiker V, Nasir A, Haag FWM, Lebert M (2014) Influence of different light-dark cycles on motility and photosynthesis of Euglena gracilis in closed bioreactors. Astrobiology 14(10):848–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AM (1970) Geotaxis in motile micro-organisms. J Exp Biol 53:687–699

    CAS  PubMed  Google Scholar 

  • Russo E, Salzano M, De Falco V, Mian C, Barollo S, Secondo A, Bifulco M, Vitale M (2014) Calcium/calmodulin-dependent protein kinase II and its endogenous inhibitor α in medullary thyroid cancer. Clin Cancer Res 20(6):1513–1520

    Article  CAS  PubMed  Google Scholar 

  • Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. In: Blaustein MP, Greger R, Grunicke H, Jahn R, Mendell LM, Miyajima A, Pette D, Schultz G, Schweiger M (eds) Reviews of Physiology and Biochemistry and Pharmacology, vol 132. Springer, Berlin, pp 1–78

    Google Scholar 

  • Sachs J (1882) Über Ausschließung der geotropischen und heliotropischen Krümmungen während des Wachsens. Arbeiten des Botanischen Instituts Würzburg Bd. 2:209–225

    Google Scholar 

  • Sack FD (1997) Plastids and gravitropic sensing. Planta 203:63–68

    Article  Google Scholar 

  • Sakashita T, Doi M, Yasuda H, Fuma S, Häder D-P (2002a) Protection of negative gravitaxis in Euglena gracilis Z against gamma-ray irradiation by Trolox C. J Radiat Res 43(Suppl):S257–S259

    Article  CAS  PubMed  Google Scholar 

  • Sakashita T, Doi M, Yasuda H, Takeda H, Fuma S, Nakamura Y, Häder D-P (2002b) Comparative study of gamma-ray and high-energy carbon ion irradiation on negative gravitaxis in Euglena gracilis Z. J Plant Physiol 159:1355–1360

    Article  CAS  Google Scholar 

  • Sakashita T, Doi M, Yasuda H, Takeda H, Fuma S, Nakamura Y, Häder D-P (2002c) High-energy carbon ion irradiation and the inhibition of negative gravitaxis in Euglena gracilis Z. Int J Radiat Biol 78:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Salmi ML, Bushart TJ, Roux SJ (2011) Autonomous gravity perception and responses of single plant cells. Gravitat Space Res 25(1):6–13

    Google Scholar 

  • Sarafis V (2013) 31. X-ray microscopy as a possible tool for the investigation. In: X-ray microscopy: Proceedings of the International Symposium, 14–16 September 1983, Göttingen, Federal Republic of Germany. Springer, p 294

    Google Scholar 

  • Schmidt W (2004) Quickly changing acceleration forces (QCAFs) vibration analysis on the A300 ZERO-G. Microgravity Sci Technol 15(1):42–48

    Article  PubMed  Google Scholar 

  • Schnabl H (2002) Gravistimulated effects in plants. Springer, Berlin

    Google Scholar 

  • Schwarz F (1884) Der Einfluß der Schwerkraft auf die Bewegungsrichtung von Chlamydomonas und Euglena. Ber Dtsch Bot Ges 2:51–72

    Google Scholar 

  • Schwer CI, Lehane C, Guelzow T, Zenker S, Strosing KM, Spassov S, Erxleben A, Heimrich B, Buerkle H, Humar M (2013) Thiopental inhibits global protein synthesis by repression of eukaryotic elongation factor 2 and protects from hypoxic neuronal cell death. PLoS One 8(10):e77258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastian C, Scheuerlein R, Häder D-P (1994) Graviperception and motility of three Prorocentrum strains impaired by solar and artificial ultraviolet radiation. Mar Biol 120:1–7

    Article  Google Scholar 

  • Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ (2004) Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 70(10):6230–6239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sineshchekov O, Lebert M, Häder D-P (2000) Effects of light on gravitaxis and velocity in Chlamydomonas reinhardtii. J Plant Physiol 157:247–254

    Article  CAS  PubMed  Google Scholar 

  • Sinha RP, Ambasht NK, Sinha JP, Klisch M, Häder D-P (2003) UV-B-induced synthesis of mycosporine-like amino acids in three strains of Nodularia (cyanobacteria). J Photochem Photobiol B Biol 71:51–58

    Article  CAS  Google Scholar 

  • Sivonen K, Kononen K, Carmichael W, Dahlem A, Rinehart K, Kiviranta J, Niemela S (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl Environ Microbiol 55(8):1990–1995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Son YK, Li H, Jung ID, Park Y-M, Jung W-K, Kim HS, Choi I-W, Park WS (2014) The calmodulin inhibitor and antipsychotic drug trifluoperazine inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 443(1):321–325

    Article  PubMed  CAS  Google Scholar 

  • Sourjik V, Wingreen NS (2012) Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol 24(2):262–268

    Article  CAS  PubMed  Google Scholar 

  • Spoto G, Papponetti M, Barbacane RC, Repola D, Beradi S (1997) Caffein, theophilline, and bamifylline are similar as competive inhibitors of 3',5'-cyclic AMP phosphodiesterase in vitro. Int J Immunopathol Pharmacol 10:153

    CAS  Google Scholar 

  • Stahl E (1880) Über den Einfluß von Richtung und Stärke der Beleuchtung auf einige Bewegungserscheinungen im Pflanzenreich. Bot Zeitung 38:297–413

    Google Scholar 

  • Stallwitz E, Häder D-P (1994) Effects of heavy metals on motility and gravitactic orientation of the flagellate, Euglena gracilis. Eur J Protistol 30:18–24

    Article  CAS  PubMed  Google Scholar 

  • Steck R, Hill S, Robison RA, O’Neill KL (2014) Pharmacological reversal of caffeine-mediated phagocytic suppression. Cancer Res 74(19 Supplement):4861

    Article  Google Scholar 

  • Steidinger KA, Tangen K (1996) Dinoflagellates. In: Tomas CR, Hasle GR, Syvertsen EE (eds) Identifying Marine Diatoms and Dinoflagellates. Academic Press, London, pp 387–585

    Chapter  Google Scholar 

  • Strauch S, Richter P, Schuster M, Häder D-P (2010) The beating pattern of the flagellum of Euglena gracilis under altered gravity during parabolic flights. J Plant Physiol 167(1):41–46

    Article  CAS  PubMed  Google Scholar 

  • Streb C, Richter P, Lebert M, Häder D-P (2001) Gravi-sensing microorganisms as model systems for gravity sensing in eukaryotes. In: Proceeding of the First European Workshop on Exo−/Astro-biology, Frascati, pp 251–254

    Google Scholar 

  • Streb C, Richter P, Ntefidou M, Lebert M, Häder D-P (2002) Sensory transduction of gravitaxis in Euglena gracilis. J Plant Physiol 159:855–862

    Article  CAS  Google Scholar 

  • Streb C, Richter P, Häder D-P (2006) ECOTOX—a biomonitoring system for UV-effects and toxic substances. In: Ghetti F, Checcucci G, Bornman JF (eds) Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models. Springer, The Netherlands, p 288

    Google Scholar 

  • Studer M, Bradacs G, Hilliger A, Hürlimann E, Engeli S, Thiel CS, Zeitner P, Denier B, Binggeli M, Syburra T (2011) Parabolic maneuvers of the Swiss Air Force fighter jet F-5E as a research platform for cell culture experiments in microgravity. Acta Astronaut 68(11):1729–1741

    Article  CAS  Google Scholar 

  • Sultana H, Neelakanta G, Rivero F, Blau-Wasser R, Schleicher M, Noegel AA (2012) Ectopic expression of cyclase associated protein CAP restores the streaming and aggregation defects of adenylyl cyclase a deficient Dictyostelium discoideum cells. BMC Dev Biol 12(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Švegždienė D, Koryznienė D, Raklevičienė D (2011) Comparison study of gravity-dependent displacement of amyloplasts in statocytes of cress roots and hypocotyls. Microgravity Sci Technol 23(2):235–241

    Article  Google Scholar 

  • Tahedl H, Richter P, Lebert M, Häder D-P (1997) cAMP is involved in gravitxis signal transduction of Euglena gracilis. Microgravity Sci Technol 10:53–57

    Google Scholar 

  • Tahedl H, Richter P, Lebert M, Häder D-P (1998) cAMP is involved in gravitaxis signal transduction of Euglena gracilis. Microgravity Sci Technol 11:173–178

    Google Scholar 

  • Talbot M, Bate G (1987) Rip current charactersitics and their role in the exchange of water and surf diatoms between the surf zone and nearshore. Estuar Coast Shelf Sci 25(6):707–720

    Article  Google Scholar 

  • Taneda K, Miyata S (1995) Analysis of motile tracks of Paramecium under gravity field. Comp Biochem Physiol 111A:673–680

    Article  CAS  Google Scholar 

  • Taylor F (1967) The occurrence of Euglena deses on the sands of the Sierra Leone peninsula. J Ecol 55:345–359

    Article  Google Scholar 

  • Taylor WR, Seliger HH, Fastie WG, McElroy WD (1966) Biological and physical observations on a phosphorescent bay in Falmouth Harbor, Jamaica, W.I. J Mar Res 24:28–43

    Google Scholar 

  • Toda H, Yazawa M, Yagi K (1992) Amino acid sequence of calmodulin from Euglena gracilis. Eur J Biochem 205:653–660

    Article  CAS  PubMed  Google Scholar 

  • Tuschl T, Elbashir SM, Lendeckel W (2014) RNA interference mediating small RNA molecules: Google Patents

    Google Scholar 

  • Ullrich O, Häder D-P (2006) Editorial. Signal transduction in gravity perception: from microorganisms to mammals. Signal Transduct 6:377–379

    Article  CAS  Google Scholar 

  • Ullrich O, Thiel CS (2012) Gravitational Force: triggered stress in cells of the immune system. In: Stress Challenges and Immunity in Space. Springer, Berlin, pp 187–202

    Google Scholar 

  • Vogel K, Häder D-P (1990) Simultaneuos tracking of flagellates in real time by image analysis. In: Proceedings of the Fourth European Symposium on Life Science Research in Space (ESA SP-307). pp 541–545

    Google Scholar 

  • Vogel K, Hemmersbach-Krause R, Kühnel C, Häder D-P (1993) Swimming behavior of the unicellular flagellate, Euglena gracilis, in simulated and real microgravity. Microgravity Sci Technol 4:232–237

    Google Scholar 

  • Volkmann D, Bucher B, Hejnowicz Z, Tewinkel M, Sievers A (1991) Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets. Planta 185:153–161

    Article  Google Scholar 

  • Votta JJ, Jahn TL (1972) Galvanotaxis of Chilomonas paramecium and Trachelomonas volvocina. J Protozool 19(Suppl):43

    Google Scholar 

  • Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5(12):1024–1037

    Article  CAS  PubMed  Google Scholar 

  • Wager H (1911) On the effect of gravity upon the movements and aggregation of Euglena viridis, Ehrb., and other micro-organisms. Philosoph Trans Roy Soc London B 201:333–390

    Article  Google Scholar 

  • Walsby AE (1987) Mechanisms of buoyancy regulation by planktonic cyanobacteria with gas vesicles. In: Fay P, Van Baalen C (eds) The Cyanobacteria. Elsevier Science, Amsterdam, The Netherlands, pp 385–392

    Google Scholar 

  • Wang J, Sun Y, Tomura H, Okajima F (2012) Ovarian cancer G-protein-coupled receptor 1 induces the expression of the pain mediator prostaglandin E2 in response to an acidic extracellular environment in human osteoblast-like cells. Int J Biochem Cell Biol 44(11):1937–1941

    Article  CAS  PubMed  Google Scholar 

  • Weisenseel M, Meyer AJ (1997) Bioelectricity, gravity and plants. Planta 203:98–106

    Article  Google Scholar 

  • Willemoes JG, Beltrano J, Montaldi ER (1987) Diagravitropism in bermudagrass (Cynodon dactylon (L.) Pers.) as determined by a gravitropic and a geoepinastic phenomenon. Plant Sci 51:187–191

    Article  Google Scholar 

  • Winet H, Jahn TL (1974) Geotaxis in protozoa: I. A propulsion-gravity model for Tetrahymena (Ciliata). J Theor Biol 46:449–465

    Article  CAS  PubMed  Google Scholar 

  • Wolff D, Künne A (2000) Light-regulated, circadian respiration activity of Euglena gracilis mutants that lack chloroplasts. J Plant Physiol 156:52–59

    Article  CAS  Google Scholar 

  • Yang XC, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    Article  CAS  PubMed  Google Scholar 

  • Yentsch CS, Backus RH, Wing A (1964) Factors affecting the vertical distribution of bioluminescence in the euphotic zone. Limnol Oceanogr 9:519–524

    Article  Google Scholar 

  • Yoshimura K (2011) Stimulus perception and membrane excitation in unicellular alga Chlamydomonas. In: Coding and Decoding of Calcium Signals in Plants. Springer, pp 79–91

    Google Scholar 

Download references

Acknowledgements

The authors thank their coworkers P. Richter, M. Ntefidou and S. Strauch for critically reading the manuscript. Funding of the underlying research by DFG, DLR, ESA, NASA and BMBF is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donat-P. Häder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Häder, DP., Hemmersbach, R. (2017). Gravitaxis in Euglena . In: Schwartzbach, S., Shigeoka, S. (eds) Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology, vol 979. Springer, Cham. https://doi.org/10.1007/978-3-319-54910-1_12

Download citation

Publish with us

Policies and ethics