Skip to main content

Gravitaxis in Flagellates and Ciliates

  • Chapter
  • First Online:
Gravitational Biology I

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

Abstract

Motile microorganisms such as flagellates and ciliates use the gravity vector of the Earth to adjust their position in the water column. Oriented movement by gravity is called gravitaxis and can be positive (downward swimming) or negative (upward swimming). In addition, some ciliates modify their velocity according to the swimming direction (gravikinesis). Earth-bound research and experimentation under simulated and real microgravity have revealed that a heavy mass such as a statolith or the whole cell content presses onto a gravireceptor which perceives the signal. In some cases mechanosensitive ion channels have been identified as gravireceptors. The activation of the receptor results in a cascade of reactions which amplify the signal and result in a steering response changing the direction of movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler EM (2013) Bacteria under pressure, calcium channel internalization, and why cockroaches avoid glucose-baited traps. J Gen Physiol 142:1–2

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlow PW (1995) Gravity perception in plants: a multiplicity of systems derived by evolution? Plant Cell Environ 18:951–962

    Article  PubMed  CAS  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London

    Google Scholar 

  • Bräucker R, Cogoli A, Hemmersbach R (2001) Graviperception and graviresponse at the cellular level. In: Baumstark-Khan C, Horneck G (eds) Astrobiology: the quest for the conditions of life. Springer Verlag, Berlin, pp 284–297

    Google Scholar 

  • Cai Y, Nagel DJ, Zhou Q, Cygnar KD, Zhao H, Li F, Pi X, Knight PA, Yan C (2015) Role of cAMP-phosphodiesterase 1C signaling in regulating growth factor receptor stability, vascular smooth muscle cell growth, migration, and neointimal hyperplasia. Circ Res 116:1120–1132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Callow ME, Callow JA, Pickett-Heaps JD, Wetherbee R (1997) Primary adhesion of Enteromorpha (Chlorophyta, Ulvales) propagules: quantitative settlement studies and video microscopy. J Phycol 33:938–947

    Article  Google Scholar 

  • Cameron R, Baillie GS (2012) cAMP-specific phosphodiesterases: modulation, inhibition, and activation. In: Botana LM, Loza M (eds) Therapeutic targets: modulation, inhibition, and activation. Wiley, Hoboken, NJ, p 1

    Google Scholar 

  • Chang SC, Kaufman PB (2000) Effects of staurosporine, okadaic acid and sodium fluoride on protein phophorylation in graviresponding oat shoot pulvini. Plant Physiol Biochem 38:315–323

    Article  PubMed  CAS  Google Scholar 

  • Clegg MR, Maberly SC, Jones RI (2003) Chemosensory behavioural response of freshwater phytoplanktonic flagellates. Plant Cell Environ 27:123–135

    Article  Google Scholar 

  • Daiker V, Häder D-P, Lebert M (2010) Molecular characterization of calmodulins involved in the signal transduction chain of gravitaxis in Euglena. Planta 231:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Daiker V, Häder D-P, Richter RP, Lebert M (2011) The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis. Planta 233:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Dennison DS, Shropshire W Jr (1984) The gravireceptor of Phycomyces. Its development following gravity exposure. J Gen Physiol 84:845–859

    Article  PubMed  CAS  Google Scholar 

  • Eggersdorfer B, Häder D-P (1991) Phototaxis, gravitaxis and vertical migrations in the marine dinoflagellate Prorocentrum micans. FEMS Microbiol Ecol 85:319–326

    Article  Google Scholar 

  • Favaro E, Granata R, Miceli I, Baragli A, Settanni F, Perin PC, Ghigo E, Camussi G, Zanone M (2012) The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditions, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK) 1/2 and cAMP/protein kinase a (PKA) signalling pathways. Diabetologia 55:1058–1070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1984) Geotaxis in the ciliated protozoon Loxodes. J Exp Biol 110:17–33

    Google Scholar 

  • Fenchel T, Finlay BJ (1986) The structure and function of Müller vesicles in loxodid ciliates. J Protozool 33:69–76

    Article  Google Scholar 

  • Fenchel T, Finlay BJ (1990) Oxygen toxicity, respiration and behavioural responses to oxygen in free-living anaerobic ciliates. J Gen Microbiol 136:1953–1959

    Article  CAS  Google Scholar 

  • Fiedler B, Börner T, Wilde A (2005) Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors. Photochem Photobiol 81:1481–1488

    Article  PubMed  CAS  Google Scholar 

  • Finlay BJ, Tellez C, Esteban G (1993) Diversity of free-living ciliates in the sandy sediment of a Spanish stream in winter. J Gen Microbiol 139:2855–2863

    Article  Google Scholar 

  • Fraenkel GS, Gunn DL (1961) The orientation of animals (Kineses, taxes and compass reactions). Dover Publication, New York

    Google Scholar 

  • Friedrich ULD, Joop O, Pütz C, Willich G (1996) The slow rotating centrifuge microscope NIZEMI – a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science. J Biotechnol 47:225–238

    Article  PubMed  CAS  Google Scholar 

  • Fukui K, Asai H (1985) Negative geotactic behavior of Paramecium caudatum is completely described by the mechanism of buoyancy-oriented upward swimming. Biophys J 47:479–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gebauer M, Watzke D, Machemer H (1999) The gravikinetic response of Paramecium is based on orientation-dependent mechanotransduction. Naturwissenschaften 86:352–356

    Article  PubMed  CAS  Google Scholar 

  • Häder D-P (1991) Strategy of orientation in flagellates. In: Riklis E (ed) Photobiology. Springer, Boston, MA, pp 497–510

    Chapter  Google Scholar 

  • Häder D-P (1997) Gravitaxis and phototaxis in the flagellate Euglena studied on TEXUS missions. In: Cogoli A, Friedrich U, Mesland D, Demets R (eds) Life science experiments performed on sounding rockets (1985–1994). ESA Publications Division, Noordwijk, pp 77–79

    Google Scholar 

  • Häder D-P (2017) Image analysis for bioassays – the basics. In: Häder D-P, Erzinger GS (eds) Bioassays: advanced methods and applications. Elsevier, Atlanta, GA, pp 69–98

    Google Scholar 

  • Häder D-P, Erzinger GS (2015) Advanced methods in image analysis as potent tools in online biomonitoring of water resources. Recent Pat Top Imaging 5:112–118

    Article  Google Scholar 

  • Häder D-P, Hemmersbach R (1997) Graviperception and graviorientation in flagellates. Planta 203:7–10

    Article  Google Scholar 

  • Häder D-P, Iseki M (2017) Photomovement in Euglena. In: Schwartzbach S, Shigeoka S (eds) Euglena: biochemistry, cell and molecular biology. Springer, Cham, pp 207–235

    Chapter  Google Scholar 

  • Häder D-P, Lebert M (1985) Real time computer-controlled tracking of motile microorganisms. Photochem Photobiol 42:509–514

    Article  PubMed  Google Scholar 

  • Häder D-P, Lebert M (1998) Mechanism of gravitactic signal perception and signal transduction of Euglena gracilis. Micrograv News 11:14

    Google Scholar 

  • Häder D-P, Lebert M (2000) Real-time tracking of microorganisms. In: Häder D-P (ed) Image analysis: methods and applications. CRC Press, Boca Raton, pp 393–422

    Chapter  Google Scholar 

  • Häder D-P, Lebert M (2001) Graviperception and gravitaxis in algae. Adv Space Res 27:861–870

    Article  PubMed  Google Scholar 

  • Häder D-P, Lebert M (2002) Graviorientation in flagellates. Proceedings 2nd China-Germany workshop on microgravity sciences, National Microgravity Laboratory, Chinese Academy of Sciences, Dunhuang, Beijing, China, September 1–3, 2002

    Google Scholar 

  • Häder D-P, Liu SM (1990) Effects of artificial and solar UV-B radiation on the gravitactic orientation of the dinoflagellate, Peridinium gatunense. FEMS Microbiol Ecol 73:331–338

    Article  Google Scholar 

  • Häder D-P, Vogel K (1991) Simultaneous tracking of flagellates in real time by image analysis. J Math Biol 30:63–72

    Article  Google Scholar 

  • Häder D-P, Vogel K, Schäfer J (1990) Responses of the photosynthetic flagellate, Euglena gracilis, to microgravity. Appl Micrograv Technol 3:110–116

    Google Scholar 

  • Häder D-P, Rosum A, Schäfer J, Hemmersbach R (1996) Graviperception in the flagellate Euglena gracilis during a shuttle space flight. J Biotechnol 47:261–269

    Article  PubMed  Google Scholar 

  • Häder D-P, Porst M, Tahedl H, Richter P, Lebert M (1997) Gravitactic orientation in the flagellate Euglena gracilis. Microgravity Sci Technol 10:53–57

    Google Scholar 

  • Häder D-P, Lebert M, Richter P (1999) Gravitaxis and graviperception in flagellates and ciliates. Proceedings 14th ESA symposium on European rocket and balloon programmes and related research (ESA SP-437), Potsdam, Germany

    Google Scholar 

  • Häder D-P, Lebert M, Richter P, Ntefidou M (2003) Gravitaxis and graviperception in flagellates. Adv Space Res 31:2181–2186

    Article  PubMed  Google Scholar 

  • Häder D-P, Hemmersbach R, Lebert M (2005a) Gravity and the behavior of unicellular organisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Häder D-P, Richter P, Daiker V, Lebert M (2005b) Molecular transduction chain for graviorientation in flagellates. ELGRA News 24:74

    Google Scholar 

  • Häder D-P, Richter P, Ntefidou M, Lebert M (2005c) Gravitational sensory transduction chain in flagellates. Adv Space Res 36:1182–1188

    Article  CAS  Google Scholar 

  • Häder D-P, Richter P, Lebert M (2006) Signal transduction in gravisensing of flagellates. Signal Transduct 6:422–431

    Article  CAS  Google Scholar 

  • Häder D-P, Richter P, Schuster M, Daiker V, Lebert M (2009) Molecular analysis of the graviperception signal transduction in the flagellate Euglena gracilis: involvement of a transient receptor potential-like channel and a calmodulin. Adv Space Res 43:1179–1184

    Article  CAS  Google Scholar 

  • Häder D-P, Faddoul J, Lebert M, Richter P, Schuster M, Richter R, Strauch SM, Daiker V, Sinha R, Sharma N (2010) Investigation of gravitaxis and phototaxis in Euglena gracilis. In: Sinha R, Sharma NK, Rai AK (eds) Advances in life sciences. IK International Publishing House, New Delhi, pp 117–131

    Google Scholar 

  • Haupt W (1962) Geotaxis. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie. Springer-Verlag, Berlin, pp 390–395

    Google Scholar 

  • Hemmersbach R, Bräucker R (2002) Gravity-related behaviour in ciliates and flagellates. Adv Space Biol Med 8:59–75

    Article  PubMed  Google Scholar 

  • Hemmersbach R, Braun M (2006) Gravity-sensing and gravity-related signaling pathways in unicellular model systems of protists and plants. Signal Transduct 6:432–442

    Article  CAS  Google Scholar 

  • Hemmersbach R, Donath R (1995) Gravitaxis of Loxodes and Paramecium. Eur J Protistol 31:433

    Google Scholar 

  • Hemmersbach R, Häder D-P (1999) Graviresponses of certain ciliates and flagellates. FASEB J 13:S69–S75

    Article  PubMed  CAS  Google Scholar 

  • Hemmersbach R, Voormanns R, Briegleb W, Rieder N, Häder D-P (1996) Influence of accelerations on the spatial orientation of Loxodes and Paramecium. J Biotechnol 47:271–278

    Article  PubMed  CAS  Google Scholar 

  • Hemmersbach R, Voormanns R, Bromeis B, Schmidt N, Rabien H, Ivanova K (1998) Comparative studies of the graviresponses of Paramecium and Loxodes. Adv Space Res 21:1285–1289

    Article  PubMed  CAS  Google Scholar 

  • Hemmersbach R, Volkmann D, Häder D-P (1999) Graviorientation in protists and plants. J Plant Physiol 154:1–15

    Article  PubMed  CAS  Google Scholar 

  • Hemmersbach-Krause R, Häder D-P (1990) Negative gravitaxis (geotaxis) of Paramecium – demonstrated by image analysis. Appl Micrograv Technol 4:221–223

    Google Scholar 

  • Hemmersbach-Krause R, Briegleb W, Häder D-P (1991) Dependence of gravitaxis in Paramecium on oxygen. Eur J Protistol 27:278–282

    Article  PubMed  CAS  Google Scholar 

  • Hemmersbach-Krause R, Briegleb W, Häder D-P, Vogel K, Grothe D, Meyer I (1993) Orientation of Paramecium under the conditions of weightlessness. J Eukaryot Microbiol 40:439–446

    Article  CAS  PubMed  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida C, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Jarman AP, Groves AK (2013) The role of atonal transcription factors in the development of mechanosensitive cells. Semin Cell Dev Biol 24:438–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kessler JO, Hill NA (1997) Complementarity of physics, biology and geometry in the dynamics of swimming micro-organisms. In: Physics of biological systems. Springer, Berlin, pp 325–340

    Chapter  Google Scholar 

  • Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239:1–26

    Article  PubMed  CAS  Google Scholar 

  • Köhler O (1921) Über die Geotaxis von Paramecium. Verhandlungen der Deutschen Zoologischen Gesellschaft 26:69–71

    Google Scholar 

  • Krause M (1999) Elektrophysiologie, Mechanosensitivität und Schwerkraftbeantwortung von Bursaria truncatella Diploma thesis, Fakultät für Biologie der Ruhr-Universität Bochum

    Google Scholar 

  • Krause M, Bräucker R, Hemmersbach R (2010) Gravikinesis in Stylonychia mytilus is based on membrane potential changes. J Exp Biol 213:161–171

    Article  PubMed  Google Scholar 

  • Lebert M, Häder D-P (1996) How Euglena tells up from down. Nature 379:590

    Article  PubMed  CAS  Google Scholar 

  • Lebert M, Richter P, Porst M, Häder D-P (1996) Mechanism of gravitaxis in the flagellate Euglena gracilis. Proceedings of the 12th C.E.B.A.S.workshops. Annual issue 1996, Ruhr-University of Bochum, Bochum, Germany

    Google Scholar 

  • Lebert M, Richter P, Häder D-P (1997) Signal perception and transduction of gravitaxis in the flagellate Euglena gracilis. J Plant Physiol 150:685–690

    Article  CAS  Google Scholar 

  • Lebert M, Porst M, Häder D-P (1999a) Circadian rhythm of gravitaxis in Euglena gracilis. J Plant Physiol 155:344–349

    Article  PubMed  CAS  Google Scholar 

  • Lebert M, Porst M, Richter P, Häder D-P (1999b) Physical characterization of gravitaxis in Euglena gracilis. J Plant Physiol 155:338–343

    Article  PubMed  CAS  Google Scholar 

  • Machemer H (1994) Gravity-dependent modulation of swimming rate in ciliates. Acta Protozool 33:53–57

    Google Scholar 

  • Machemer H, Bräucker R (1992) Gravireception and graviresponses in ciliates. Acta Protozool 31:185–214

    PubMed  CAS  Google Scholar 

  • Machemer-Röhnisch S, Bräucker R, Machemer H (1998) Graviresponses of gliding and swimming Loxodes using step transition to weightlessness. J Eukaryot Microbiol 45:411–418

    Article  PubMed  Google Scholar 

  • Maree AFM, Panfilov AV, Hogeweg P (1999) Migration and thermotaxis of Dictyostelium discoideum slugs, a model study. J Theor Biol 199:297–309

    Article  CAS  Google Scholar 

  • Moore A (1903) Some facts concerning geotropic gatherings of paramecia. Am J Physiol 9:238–244

    Google Scholar 

  • Naccache PH (1985) Neutrophil activation and calmodulin antagonists. In: Hidaka H, Hartshorne DJ (eds) Calmodulin antagonists and cellular physiology. Academic Press, Orlando, pp 149–160

    Chapter  Google Scholar 

  • Nasir A, Strauch S, Becker I, Sperling A, Schuster M, Richter P, Weißkopf M, Ntefidou M, Daiker V, An Y (2014) The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. Plant Biol 16:113–119

    Article  PubMed  Google Scholar 

  • Neugebauer DC, Machemer-Röhnisch S, Nagel U, Bräucker R, Machemer H (1998) Evidence of central and peripheral gravireception in the ciliate Loxodes striatus. J Comp Physiol A 183:303–311

    Article  Google Scholar 

  • Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 464:425–458

    Article  PubMed  CAS  Google Scholar 

  • Ntefidou M, Richter P, Streb C, Lebert M, Häder D-P (2002) High light exposure leads to a sign change in gravitaxis of the flagellate Euglena gracilis. Life in space for life on earth. 8th European symposium on life sciences research in space. 23rd annual international gravitational physiology meeting, Karolinska Institutet, Stockholm, Sweden, ESA SP-501

    Google Scholar 

  • Piazena H, Häder D-P (1995) Vertical distribution of phytoplankton in coastal waters and its detection by backscattering measurements. Photochem Photobiol 62:1027–1034

    Article  CAS  Google Scholar 

  • Platt JB (1899) On the specific gravity of Spirostomum, Paramecium and the tadpole in relation to the problem of geotaxis. Am Nat 33:31

    Article  Google Scholar 

  • Raymont JE (2014) Plankton & Productivity in the oceans: volume 1: phytoplankton. Pergamon Press, Oxford

    Google Scholar 

  • Renart MF, Sebastian J, Mato JM (1981) Adenylate cyclase activity in permeabilized cells from Dictyostelium discoideum. Cell Biol Int Rep 5:1045–1054

    Article  PubMed  CAS  Google Scholar 

  • Rhiel E, Häder D-P, Wehrmeyer W (1988) Diaphototaxis and gravitaxis in a freshwater Cryptomonas. Plant Cell Physiol 29:755–760

    PubMed  CAS  Google Scholar 

  • Richter P, Lebert M, Korn R, Häder D-P (2001) Possible involvement of the membrane potential in the gravitactic orientation of Euglena gracilis. J Plant Physiol 158:35–39

    Article  PubMed  CAS  Google Scholar 

  • Richter P, Ntefidou M, Streb C, Lebert M, Häder D-P (2002a) Physiological characterization of gravitaxis in Euglena gracilis. J Gravit Physiol 9:279–280

    Google Scholar 

  • Richter PR, Ntefidou M, Streb C, Faddoul J, Lebert M, Häder D-P (2002b) High light exposure leads to a sign change of gravitaxis in the flagellate Euglena gracilis. Acta Protozool 41:343–351

    Google Scholar 

  • Richter PR, Schuster M, Wagner H, Lebert M, Häder D-P (2002c) Physiological parameters of gravitaxis in the flagellate Euglena gracilis obtained during a parabolic flight campaign. J Plant Physiol 159:181–190

    Article  PubMed  CAS  Google Scholar 

  • Richter P, Börnig A, Streb C, Ntefidou M, Lebert M, Häder D-P (2003a) Effects of increased salinity on gravitaxis in Euglena gracilis. J Plant Physiol 160:651–656

    Article  PubMed  CAS  Google Scholar 

  • Richter P, Ntefidou M, Streb C, Lebert M, Häder D-P (2003b) The role of reactive oxygen species (ROS) in signaling of light stress. Recent Res Dev Biochem 4:957–970

    CAS  Google Scholar 

  • Richter PR, Streb C, Ntefidou M, Lebert M, Häder D-P (2003c) High light-induced sign change of gravitaxis in the flagellate Euglena gracilis is mediated by reactive oxygen species. Acta Protozool 42:197–204

    CAS  Google Scholar 

  • Richter PR, Schuster M, Meyer I, Lebert M, Häder D-P (2006) Indications for acceleration-dependent changes of membrane potential in the flagellate Euglena gracilis. Protoplasma 229:101–108

    Article  PubMed  CAS  Google Scholar 

  • Richter PR, Häder D-P, Gonçalves RJ, Marcoval MA, Villafañe VE, Helbling EW (2007) Vertical migration and motility responses in three marine phytoplankton species exposed to solar radiation. Photochem Photobiol 83:810–817

    Article  PubMed  CAS  Google Scholar 

  • Roberts AM (1970) Geotaxis in motile micro-organisms. J Exp Biol 53:687–699

    PubMed  CAS  Google Scholar 

  • Russo E, Salzano M, De Falco V, Mian C, Barollo S, Secondo A, Bifulco M, Vitale M (2014) Calcium/calmodulin-dependent protein kinase II and its endogenous inhibitor α in medullary thyroid cancer. Clin Cancer Res 20:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. In: Blaustein MP, Greger R, Grunicke H et al (eds) Reviews of physiology and biochemistry and pharmacology. Springer-Verlag, Berlin, pp 1–78

    Google Scholar 

  • Schwer CI, Lehane C, Guelzow T, Zenker S, Strosing KM, Spassov S, Erxleben A, Heimrich B, Buerkle H, Humar M (2013) Thiopental inhibits global protein synthesis by repression of eukaryotic elongation factor 2 and protects from hypoxic neuronal cell death. PLoS One 8:e77258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sebastian C, Scheuerlein R, Häder D-P (1994) Graviperception and motility of three Prorocentrum strains impaired by solar and artificial ultraviolet radiation. Mar Biol 120:1–7

    Article  Google Scholar 

  • Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ (2004) Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 70:6230–6239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sineshchekov O, Lebert M, Häder D-P (2000) Effects of light on gravitaxis and velocity in Chlamydomonas reinhardtii. J Plant Physiol 157:247–254

    Article  PubMed  CAS  Google Scholar 

  • Son YK, Li H, Jung ID, Park Y-M, Jung W-K, Kim HS, Choi I-W, Park WS (2014) The calmodulin inhibitor and antipsychotic drug trifluoperazine inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 443:321–325

    Article  PubMed  CAS  Google Scholar 

  • Stallwitz E, Häder D-P (1994) Effects of heavy metals on motility and gravitactic orientation of the flagellate, Euglena gracilis. Eur J Protistol 30:18–24

    Article  PubMed  CAS  Google Scholar 

  • Steck R, Hill S, Robison RA, O'Neill KL (2014) Pharmacological reversal of caffeine-mediated phagocytic suppression. Cancer Res 74:4861

    Article  Google Scholar 

  • Streb C, Richter P, Ntefidou M, Lebert M, Häder D-P (2002) Sensory transduction of gravitaxis in Euglena gracilis. J Plant Physiol 159:855–862

    Article  CAS  Google Scholar 

  • Sultana H, Neelakanta G, Rivero F, Blau-Wasser R, Schleicher M, Noegel AA (2012) Ectopic expression of cyclase associated protein CAP restores the streaming and aggregation defects of adenylyl cyclase a deficient Dictyostelium discoideum cells. BMC Dev Biol 12:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tahedl H, Richter P, Lebert M, Häder D-P (1998) cAMP is involved in gravitaxis signal transduction of Euglena gracilis. Microgravity Sci Technol 11:173–178

    Google Scholar 

  • Taylor F (1967) The occurrence of Euglena deses on the sands of the Sierra Leone peninsula. J Ecol 55:345–359

    Article  Google Scholar 

  • Toda H, Yazawa M, Yagi K (1992) Amino acid sequence of calmodulin from Euglena gracilis. Eur J Biochem 205:653–660

    Article  PubMed  CAS  Google Scholar 

  • Vogel K, Häder D-P (1990) Simultaneuos tracking of flagellates in real time by image analysis. Proceedings of the fourth European symposium on life science research in space (ESA SP-307)

    Google Scholar 

  • Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037

    Article  PubMed  CAS  Google Scholar 

  • Wager H (1911) On the effect of gravity upon the movements and aggregation of Euglena viridis, Ehrb., and other micro-organisms. Philos Trans R Soc Lond B 201:333–390

    Article  Google Scholar 

  • Wang J, Sun Y, Tomura H, Okajima F (2012) Ovarian cancer G-protein-coupled receptor 1 induces the expression of the pain mediator prostaglandin E2 in response to an acidic extracellular environment in human osteoblast-like cells. Int J Biochem Cell Biol 44:1937–1941

    Article  PubMed  CAS  Google Scholar 

  • Winet H, Jahn TL (1974) Geotaxis in protozoa: I. A propulsion-gravity model for Tetrahymena (Ciliata). J Theor Biol 46:449–465

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K (2011) Stimulus perception and membrane excitation in unicellular alga Chlamydomonas. In: Coding and decoding of calcium signals in plants. Springer, Berlin, pp 79–91

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Häder, DP., Hemmersbach, R. (2018). Gravitaxis in Flagellates and Ciliates. In: Gravitational Biology I. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93894-3_3

Download citation

Publish with us

Policies and ethics