Skip to main content
Log in

Gravikinesis in Paramecium: Theory and isolation of a physiological response to the natural gravity vector

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

  1. 1.

    We have investigated a physiological component of the gravitaxis of Paramecium using established mechanisms of ciliate mechanosensitivity. The horizontal, up and down swimming rates of cells, and the sedimentation of immobilized specimens were determined. Weak DC voltage gradients were applied to predetermine the Paramecium swimming direction.

  2. 2.

    An observed steady swimming rate is the vector sum of active propulsion (P), a possible gravity-dependent change in swimming rate (Δ), and rate of sedimentation (S). We approximated P from horizontal swimming. S was measured after cell immobilization.

  3. 3.

    Theory predicts that the difference between the down and up swimming rates, divided by two, equals the sum of S and Δ. Δ is supposed to be the arithmetic mean of two subcomponents, Δ a and Δ p, from gravistimulation of the anterior and posterior cell ends, respectively.

  4. 4.

    A negative value of Δ (0.038 mm/s) was isolated with Δ a(0.070 mm/s) subtracting from downward swimming, and Δ p(0.005 mm/s) adding to upward propulsion. The data agree with one out of three possible ways of gravisensory transduction: outward deformation of the mechanically sensitive ‘lower’ soma membrane. We call the response a negative gravikinesis because both Δ a and Δ p antagonize sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Δ :

gravity-induced change in active propulsion

Δ a :

change in active propulsion as induced by anterior gravireceptor

Δ p :

change in active propulsion as induced by posterior gravireceptor

D :

rate of downward swimming

D i :

individual downward swimming rate

n :

number of data

P :

active propulsion of cell

Φ :

mean swimming angle

p :

probability

R :

scalar value of mean swimming rate

r o :

coefficient of orientation

r t :

coefficient of taxis response

S :

rate of sedimentation

β i :

individual angle of swimming direction

U :

rate of upward swimming

U i :

individual upward swimming rate

v i :

individual swimming rate

References

  • Baba SA, Ooya M, Mogami Y, Okuno M, Izumi-Kurotani A, Yamashita M (1989) Gravireception in Paramecium with a note on digital image analysis of videorecords of swimming Paramecium. Biol Sci Space 3:285

    Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. In: Sibson R, Cohen JE (eds) Mathematics in biology. Academic Press, London New York Toronto Sydney San Francisco

    Google Scholar 

  • Bean B (1984) Microbial geotaxis. In: Colombetti G, Lenci F (eds) Membranes and sensory transduction. Plenum Publishing Corporation, pp 163–198

  • Bräucker R, Machemer-Röhnisch S (1990) Gravitaxis in Paramecium: In search of a physiological component. J Protozool 37:60A, 281

    Google Scholar 

  • Cole TA, Fok AK, Ueno MS, Allen AD (1990) Use of Nile Red as a rapid measure of lipid content in ciliates. Eur J Protistol 25:361–368

    Google Scholar 

  • Fukui K, Asai H (1985) Negative geotactic behavior of Paramecium caudatum is completely described by the mechanism of buoyancy-oriented upward swimming. Biophys J 47:479–483

    Google Scholar 

  • Haupt W (1962) Geotaxis. In: Ruhland W (ed) Encyclopedia of plant physiology, vol XVII, Physiology of movements. Springer, Berlin Heidelberg New York, pp 390–395

    Google Scholar 

  • Kaneshiro ES, Rope AF (1989) Paramecium tetraurelia forms two different types of crystals. VIII Int Congr Protozool Abst 75 (11E1515)

  • Koehler O (1922) Über die Geotaxis von Paramecium. Arch Protistenk 45:1–94

    Google Scholar 

  • Kuznicki L (1968) Behavior of Paramecium in gravitiy fields. I. Sinking of immobilized specimens. Acta Protozool 6:109–117

    Google Scholar 

  • Loeb J (1897) Zur Theorie der physiologischen Licht- und Schwerk- raftwirkungen. Pflügers Arch 66:439–466

    Google Scholar 

  • Lyon EP (1905) On the theory of geotropism in Paramecium. Am J Physiol 14:421–432

    Google Scholar 

  • Machemer H (1988a) Electrophysiology. In: Görtz HD (ed) Paramecium. Springer, Berlin Heidelberg New York, pp 185–215

    Google Scholar 

  • Machemer H (1988b) Motor control of cilia. In: Görtz HD (ed) Paramecium. Springer, Berlin Heidelberg New York, pp 216–235

    Google Scholar 

  • Machemer H (1988c) Galvanotaxis: Grundlagen der elektromechanischen Kopplung und Orientierung bei Paramecium. In: Zupanc GHK (ed) Praktische Verhaltensbiologie. Paul Parey, Berlin, pp 60–82

    Google Scholar 

  • Machemer H (1989) A quantitative approach towards isolation of a gravity-induced motor response in Paramecium I: Theory. Biol Sci Space 3:286

    Google Scholar 

  • Machemer H (1990a) Gravitaxis in Paramecium: An old problem reconsidered. J Protozool 37:61A, 291

    Google Scholar 

  • Machemer H (1990b) Cellular behaviour modulated by ions: electrophysiological implications. J Protozool 36:463–487

    Google Scholar 

  • Machemer H, Deitmer JW (1985) Mechanoreception in ciliates. Progr Sensory Physiol 5:81–118

    Google Scholar 

  • Machemer H, De Peyer J (1977) Swimming sensory cells: Electrical membrane parameters, receptor properties and motor control in ciliated Protozoa. Verb Dtsch Zool Ges 1977:86–110

    Google Scholar 

  • Machemer H, Ogura A (1979) Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol 296:49–60

    Google Scholar 

  • Machemer H, Sugino K (1989) Electrophysiological control of ciliary beating: A basis of motile behaviour in ciliated Protozoa. Comp Biochem Physiol 94A:365–374

    Google Scholar 

  • Machemer-Röhnisch S (1989) A quantitative approach towards isolation of a gravity-induced motor response in Paramecium II: Methods and data. Biol Sci Space 3:286

    Google Scholar 

  • Machemer-Röhnisch S, Machemer H (1984) Receptor current following controlled stimulation of immobile tail cilia in Paramecium caudatum. J Comp Physiol A 154:263–271

    Google Scholar 

  • Mogami Y, Kimura T, Okuno M, Yamashita M, Baba SA (1988a) Free fall experiments on swimming behavior of ciliates. In: Proc 16. Int Symp Space Technology Science, pp 2351–2354

  • Mogami Y, Oobayashi C, Yamaguchi T, Ogiso Y, Baba SA (1988b) Negative geotaxis in sea urchin larvae: A possible role of mechanoreception in the late stages of development. J Exp Biol 137:141–156

    Google Scholar 

  • Naitoh Y, Eckert R (1969) Ionic mechanisms controlling behavioral responses in Paramecium to mechanical stimulation. Science 164:963–965

    Google Scholar 

  • Ogura A, Machemer H (1980) Distribution of mechanoreceptor channels in the Paramecium surface membrane. J Comp Physiol 135:233–242

    Google Scholar 

  • Oka T, Nakaoka Y, Oosawa F (1986) Changes in membrane potential during adaptation to external potassium ions in Paramecium caudatum. J Exp Biol 126:111–117

    Google Scholar 

  • Roberts AM (1970) Geotaxis in motile micro-organisms. J Exp Biol 53:687–699

    Google Scholar 

  • Sachs L (1984) Angewandte Statistik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Taneda K (1987) Geotactic behavior in Paramecium caudatum. I. Geotaxis assay of individual specimen. Zool. Sci 4:781–788

    Google Scholar 

  • Taneda K, Miyata S, Shiota A (1987) Geotactic behavior in Paramecium caudatum. II. Geotaxis assay in a population of the specimens. Zool Sci 4:789–795

    Google Scholar 

  • Verworn M (1889) Psychophysiologische Protistenstudien. Fischer, Jena

    Google Scholar 

  • Winet H, Jahn TL (1974) Geotaxis in Protozoa. I. A propulsion gravity model for Tetrahymena (Ciliata). J Theor Biol 46:449–465

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machemer, H., Machemer-Röhnisch, S., Bräucker, R. et al. Gravikinesis in Paramecium: Theory and isolation of a physiological response to the natural gravity vector. J Comp Physiol A 168, 1–12 (1991). https://doi.org/10.1007/BF00217099

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217099

Key words

Navigation