Skip to main content
Log in

Solar-interplanetary modeling: 3-D solar wind solutions in prescribed non-radial magnetic field geometries

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A model is presented which describes the 3-dimensional non-radial solar wind expansion between the Sun and the Earth in a specified magnetic field configuration subject to synoptically observed plasma properties at the coronal base. In this paper, the field is taken to be potential in the inner corona based upon the Mt. Wilson magnetograph observations and radial beyond a certain chosen surface. For plasma boundary conditions at the Sun, we use deconvoluted density profiles obtained from synopticK-coronameter brightness observations. The temperature is taken to be 2 × 106 K at the base of closed field lines and 1.6 x 106K at the base of open field lines.

For a sample calculation, we employ data taken during the period of the 12 November 1966 eclipse. Although qualitative agreement with observations at 1 AU is obtained, important discrepancies emerge which are not apparent from spherically symmetric models or those models which do not incorporate actual observations in the lower corona. These discrepancies appear to be due to two primary difficulties - the rapid geometric divergence of the open field lines in the inner corona as well as the breakdown in the validity of the Spitzer heat conduction formula even closer to the Sun than predicted by radial flow models. These two effects combine to produce conductively dominated solutions and lower velocities, densities, and field strengths at the Earth than those observed. The traditional difficulty in solar wind theory in that unrealistically small densities must be assumed at the coronal base in order to obtain observed densities at 1 AU is more than compensated for here by the rapid divergence of field lines in the inner corona.

For these base conditions, the value ofβ(ratio of gas pressure to magnetic pressure) is shown to be significantly greater than one over most of the lower corona - suggesting that, for the coronal boundary conditions used here, the use of a potential or force-free magnetic field configuration may not be justified.

The calculations of this paper point to the directions where future research on solar-interplanetary modelling should receive priority:

  1. (a)

    better models for the coronal magnetic field structure

  2. (b)

    improved understanding of the thermal conductivity relevant for the solar wind plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso-Faus, A.: 1968,Planetary Space Sci. 16, 1.

    Google Scholar 

  • Altschuler, M. D. and Newkirk, G. Jr.: 1969,Solar Phys. 9, 131.

    Google Scholar 

  • Altschuler, M. D. and Perry R. M.: 1972,Solar Phys. 26, 354.

    Google Scholar 

  • Braginskii, S. I.: 1965,Rev. of Plasma Physics, Consultant Bureau, New York, p. 205.

    Google Scholar 

  • Brandt, J. C., Wolff, C., and Casinelli, J. P.: 1969,Astrophys. J. 156, 1117.

    Google Scholar 

  • Burlaga, L. F., Ogilvie, K. W., Fairfield, D. H., Montgomery, M. D., and Bame, S. J.: 1971,Astrophys. J. 164, 137.

    Google Scholar 

  • Chamberlain, J. W.: 1961,Astrophys. J. 133, 675.

    Google Scholar 

  • Dicke, R. H.: 1964,Nature 202, 432.

    Google Scholar 

  • Dupree, A. K.: 1972,Astrophys. J. 178, 527.

    Google Scholar 

  • Durney, B. R.: 1971,Astrophys. J. 166, 669.

    Google Scholar 

  • Durney, B. R.: 1972,J. Geophys. Res. 77, 4042.

    Google Scholar 

  • Durney, B. R.: 1973,J. Geophys. Res. 78, 7229.

    Google Scholar 

  • Durney, B. R. and Roberts, P. H.: 1971,Astrophys. J. 170, 319.

    Google Scholar 

  • Durney, B. R. and Hundhausen, A. J.: 1974,J. Geophys. Res. 79, 3711.

    Google Scholar 

  • Endler, F.: 1971, Ph.D. Thesis, Gottingen Univ.

  • Forslund, D. W.: 1970,J. Geophys. Res. 75, 17.

    Google Scholar 

  • Gentry, R. A. and Hundhausen, A. J.: 1969,Trans. A.G.U. 50, 302.

    Google Scholar 

  • Gosling, J. T., Hundhausen, A. J., Pizzo, V., and Asbridge, J. R.: 1972,J. Geophys. Res. 77, 5442.

    Google Scholar 

  • Hansen, R., Hansen, S., and Garcia, C.: 1967, HAO Astro-Geophysical Memorandum No. 174.

  • Hansen, S., Hansen, R., and Garcia, C.: 1972,Solar Phys. 26, 202.

    Google Scholar 

  • Hollweg, J. V.: 1971,J. Geophys. Res. 76, 7491.

    Google Scholar 

  • Hollweg, J. V.: 1974,J. Geophys. Res. 79, 3845.

    Google Scholar 

  • Hollweg, J. V. and Jokipii, J. R.: 1972,J. Geophys. Res. 77, 3311.

    Google Scholar 

  • Hundhausen, A. J.: 1969,J. Geophys. Res. 74, 5810.

    Google Scholar 

  • Hundhausen, A. J.: 1971, in S. I. Rasool (ed.),Physics of the Solar System, NASA SP-300, Washington, D.C.

  • Hundhausen, A. J.: 1972,Coronal Expansion and Solar Wind, Springer-Verlag, New York.

    Google Scholar 

  • Hundhausen, A. J.: 1973,J. Geophys. Res. 78, 1528.

    Google Scholar 

  • Kopp, R. A.: 1968, Harvard Univ. Thesis, Scientific Rept. No. 4, AFCRL-68-0312.

  • Krieger, A. S., Timothy, A. F., and Roelof, E. C.: 1973,Solar Phys. 29, 505.

    Google Scholar 

  • Krieger, A. S., Vaiana, G. S., and Van Speybroeck, L. P.: 1971, in R. Howard (ed.), ‘Solar Magnetic Fields’,IAU Symp. 43, 397.

  • Modisette, J. L.: 1967,J. Geophys. Res. 72, 1521.

    Google Scholar 

  • Montgomery, M. D.: 1972a, in K. Schindler (ed.),Cosmic Plasma Physics, Plenum Publ. Co, New York, p. 61.

    Google Scholar 

  • Montgomery, M. D.: 1972b, in C. P. Sonett, P. J. Coleman Jr., and J. M. Wilcox, (eds.)Solar Wind, NASA-SP-308, p. 208.

  • Montgomery, M. D., Bame, S. J., and Hundhausen, A. J.: 1968,J. Geophys. Res. 73, 4999.

    Google Scholar 

  • Munro, R. H. and Withbroe, G. L.: 1972,Properties of a Coronal Hole from EUV Observations, Harvard College Observatory TR-31.

  • Neugebauer, M. and Snyder, C. W.: 1966.J. Geophys. Res. 71, 4469.

    Google Scholar 

  • Neupert, W. M. and Pizzo, V.: 1973, submitted toJ. Geophys. Res.

  • Newkirk, G. Jr., Altschuler, M. D., and Harvey, J. W.: 1968, in K. O. Kiepenheuer (ed.), ‘Structure and Development of Solar Active Regions’,IAU Symp. 35, 379.

  • Newkirk, G. Jr., Dupree, R. G., and Schmahl, E. J.: 1970,Solar Phys. 15, 15.

    Google Scholar 

  • Noble, L. M. and Scarf, F. L.: 1963,Astrophys. J. 138, 1169.

    Google Scholar 

  • Nolte, J. T. and Roelof, E. C.: 1973,Solar Phys. 33, 483.

    Google Scholar 

  • Ogilvie, K. W., Scudder, J. D., and Sugiura, M.: 1971,J. Geophys. Res. 76, 8165.

    Google Scholar 

  • Parker, E. N.: 1963,Interplanetary Dynamical Processes, Interscience Publ., New York.

    Google Scholar 

  • Parker, E. N.: 1964a,Astrophys. J. 139, 72.

    Google Scholar 

  • Parker, E. N.: 1964b,Astrophys. J. 139, 93.

    Google Scholar 

  • Parker, E. N.: 1965a,Astrophys. J. 141, 1963.

    Google Scholar 

  • Parker, E. N.: 1965b,Space Sci. Rev. 4, 666.

    Google Scholar 

  • Parker, E. N.: 1972, in C. P. Sonett, P. J. Coleman, and J. M. Wilcox (eds.),Solar Wind, NASA SP-308, Washington, D.C., p. 161.

  • Perkins, F.: 1973,Astrophys. J. 179, 637.

    Google Scholar 

  • Perry, R. M.: 1973, unpublished.

  • Perry, R. M. and Altschuler, M. D.: 1973,Solar Phys. 28, 435.

    Google Scholar 

  • Pneuman, G. W.: 1966,Astrophys. J. 145, 242.

    Google Scholar 

  • Pneuman, G. W.: 1968,Solar Phys. 3, 578.

    Google Scholar 

  • Pneuman, G. W.: 1969,Solar Phys. 6, 255.

    Google Scholar 

  • Pneuman, G. W.: 1973,Solar Phys. 28, 247.

    Google Scholar 

  • Pneuman, G. W. and Kopp, R. A.: 1970,Solar Phys. 13, 176.

    Google Scholar 

  • Pneuman, G. W. and Kopp, R. A.: 1971,Solar Phys. 18, 258.

    Google Scholar 

  • Richer, A.: 1974, private communication.

  • Roberts, P. H.: 1971,Astrophys. Letters 9, 79.

    Google Scholar 

  • Roberts, P. H. and Soward, A. M.: 1972,Proc. Roy. Soc., Series A,328, 185.

    Google Scholar 

  • Schatten, K. H.: 1971,Cosmic Electrodyn. 2, 232.

    Google Scholar 

  • Schatten, K. H., Wilcox, J. M., and Ness, N. F.: 1969,Solar Phys. 6, 442.

    Google Scholar 

  • Schulz M. and Eviatar, A.: 1972,Cosmic Electrodyn. 2, 402.

    Google Scholar 

  • Spitzer, L.: 1956,Physics of Fully Ionized Gases, Interscience Publ., New York.

    Google Scholar 

  • Urch, I. H.: 1969,Solar Phys. 10, 219.

    Google Scholar 

  • Vaiana, G. S., Davis, J. M., Giacconi, R., Krieger, A. S., Silk, J. K., Timothy, A. F., and Zombeck, M.: 1973,Astrophys. J. Letters, in press.

  • Weber, E. J. and Davis, L. Jr.: 1967,Astrophys. J. 148, 217.

    Google Scholar 

  • Whang, Y. C.: 1971,Astrophys. J. 169, 369.

    Google Scholar 

  • Whang, Y. C.: 1972,Astrophys. J. 178, 221.

    Google Scholar 

  • Wilcox, J. M.: 1968,Space Sci. Rev. 8, 258.

    Google Scholar 

  • Wilson, D. C. and MacQueen, R. M.: 1974, submitted toJ. Geophys. Res.

  • Withbroe, G. L.: 1970,Solar Phys. 11, 42.

    Google Scholar 

  • Wolff, C. L., Brandt, J. C., and Southwick, R. G.: 1971,Astrophys. J. 165, 181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durney, B.R., Pneuman, G.W. Solar-interplanetary modeling: 3-D solar wind solutions in prescribed non-radial magnetic field geometries. Sol Phys 40, 461–486 (1975). https://doi.org/10.1007/BF00162392

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00162392

Keywords

Navigation