Skip to main content
Log in

Ginzburg-Landau theory of superconductor-ferromagnet heterostructures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

On the basis of a Ginzburg-Landau theory for two coupled order parameters, we investigate heterostructures of superconducting and ferromagnetic materials coupled via the proximity-effect. We study a bilayer and a sandwich-like geometry both extending to infinity. Without an external magnetic field but fully taking into account the nonlinearities, we obtain phase diagrams and temperature dependent order parameter profiles as well as corresponding free energies. In this mean field theory, we find reentrant behavior and the occurrence of first order phase transitions. We also derive relationships between different geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Maple in Magnetism, H. Suhl, ed. (Academic, New York, 1973), Vol. V, chapter 10, p. 289; ø. Fischer and M. Peter in Magnetism, H. Suhl, ed. (Academic, New York, 1973), Vol. V, chapter 11, p. 327.

  2. T. Matsubara and A. Kotani, eds. Superconductivity in Magnetic and Exotic Materials (Springer, Berlin, 1984).

    Google Scholar 

  3. H. Suhl, J. Less-Common Met. 62, 225 (1978).

    Google Scholar 

  4. R. A. Ferrell, J. K. Bhattacharjee, and A. Bagchi, Phys. Rev. Lett. 43, 154 (1979).

    Google Scholar 

  5. H. S. Greenside, E. I. Blount, and C. M. Varma, Phys. Rev. Lett. 46, 49 (1981).

    Google Scholar 

  6. M. B. Maple and ø. Fischer, eds. Superconductivity in Ternary Compounds part II (Springer, Berlin, 1982).

    Google Scholar 

  7. H. Matsumoto, R. Teshima, H. Umezawa, and M. Tachiki, Phys. Rev. B 27, 158 (1983).

    Google Scholar 

  8. P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1964).

    Google Scholar 

  9. M. A. Jensen and H. Suhl in Magnetism, G. T. Rado and H. Suhl, eds. (Academic, New York, 1966), Vol. II B, chapter 2, p. 183.

    Google Scholar 

  10. Y. A. Izyumov and Y. N. Skryabin, Phys. Met. Metall. 49, 1 (1980); K. N. Shrivastava and K. P. Sinha, Phys. Rep. 115, 93 (1984); L. N. Bulaevskii, A. I. Buzdin, M. L. Kulik, and S. V. Panyukov, Adv. Phys. 34, 175 (1985); S. L. Kakani and U. N. Upadhyaya, Phys. Stat. Sol. A 99, 15 (1987).

    Google Scholar 

  11. ø. Fischer in Festkörperprobleme XXV, P. Grosse, ed. (Vieweg, Braunschweig/Wiesbaden, 1985), S. 217 and references therein.

    Google Scholar 

  12. R. M. Hornreich and H. G. Schuster, Phys. Lett. 70A, 143 (1979).

    Google Scholar 

  13. L. L. Chang and B. C. Giessen, eds. Synthetic Modulated Structures (Academic, New York, 1985).

    Google Scholar 

  14. B. Y. Jin and J. B. Ketterson, Adv. in Phys. 38, 189 (1989).

    Google Scholar 

  15. P. M. Tedrow, J. E. Tkaczyk, and A. Kumar, Phys. Rev. Lett. 56, 1746 (1986).

    Google Scholar 

  16. W. Zinn, B. Saftic, N. Rasula, M. Mirabal, and J. Köhne, J. Magn. Magn. Mat. 35, 329 (1983).

    Google Scholar 

  17. R. Ramesh, A. Inam, W. A. Bonner, P. England, B. J. Wilkens, B. J. Meagher, L. Nazar, X. D. Wu, M. S. Hegde, C. C. Chang, T. Venkatesan, and H. Padamsee, Appl. Phys. Lett. 55, 1138 (1989); T. Matsushima, Y. Ichikawa, H. Adachi, S. Hatta, K. Setsune, and K. Wasa, Physica 169C, 285 (1990).

    Google Scholar 

  18. S. Takahashi and M. Tachiki, Phys. Rev. B 34, 3162 (1986); Phys. Rev. B 35, 145 (1987).

    Google Scholar 

  19. P. R. Auvil, J. B. Ketterson, and S. N. Song, J. Low Temp. Phys. 74, 103 (1989).

    Google Scholar 

  20. Z. Radović, M. Ledvij, and L. Dobrosavljević, Solid State Commun. 80, 43 (1991); Z. Radović, M. Ledvij, L. Dobrosavljević-Grujić, A. I. Buzdin, and J. R. Clem, Phys. Rev. B 44, 759 (1991).

    Google Scholar 

  21. A. I. Buzdin and M. Yu. Kupriyanov, JETP Lett. 52, 487 (1990); A. V. Andreev, A. I. Buzdin, and R. M. Osgood III, Phys. Rev. B 43, 10124 (1991).

    Google Scholar 

  22. O. Entin-Wohlman, G. Deutscher, and S. Alexander, Phys. Rev. B 12, 4854 (1975).

    Google Scholar 

  23. A. M. Cucolo, S. Pace, and F. Zirilli, J. Low Temp. Phys. 32, 339 (1978).

    Google Scholar 

  24. H. Schinz and F. Schwabl, J. Magn. Magn. Mat. 93, 303 (1991).

    Google Scholar 

  25. Z. Radović, L. Dobrosavljević-Grujić, A. I. Buzdin, and J. R. Clem, Phys. Rev. B 38, 2388 (1988).

    Google Scholar 

  26. G. Deutscher and P. G. de Gennes in Superconductivity, R. D. Parks, ed. (Dekker, New York, 1969), Vol. 2, chapter 17, p. 1005.

    Google Scholar 

  27. M. Kaufmann and O. Entin-Wohlman, Physica 84B, 90 (1976).

    Google Scholar 

  28. P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964); O. Entin-Wohlman, Phys. Rev. B 12, 4860 (1975); O. Entin-Wohlman and S. Alexander, J. Low Temp. Phys. 24, 229 (1976).

    Google Scholar 

  29. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists (Springer, Berlin, 1971).

    Google Scholar 

  30. Y. Imry, D. J. Scalapino, and J. Gunther, Phys. Rev. B 10, 2900 (1974).

    Google Scholar 

  31. H. Svensmark and L. M. Falicov, Phys. Rev. B 40, 201 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schinz, H., Schwabl, F. Ginzburg-Landau theory of superconductor-ferromagnet heterostructures. J Low Temp Phys 88, 347–371 (1992). https://doi.org/10.1007/BF00126600

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126600

Keywords

Navigation