Skip to main content
Log in

Promoter analysis of the auxin-regulated tobacco glutathione S-transferase genes Nt103-1 and Nt103-35

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have analysed the promoter regions of two closely related auxin-regulated glutathione S-transferase genes. All active deletion constructs tested showed expression of the reporter gene β-glucuronidase (gusA) in root tips of young seedlings and newly developing lateral roots. Auxin treatment greatly enhanced the level of expression. The Nt103-1 promoter region −370/−276 was found to be necessary, at least as a quantitative element to confer auxin-responsiveness to a reporter gene, and sequences responsible for the auxin-responsiveness must be located downstream of −370. The region −651/−370 contains sequence information necessary for uninduced expression. The Nt103-35 promoter manifested its auxin-responsiveness within the −504/−310 region. Electrophoretic mobility shift analysis, using nuclear extracts from tobacco leaves and suspension cells, identified a factor binding to a sequence (ap103, TGAGTCT) at position −560 of the Nt103-1 promoter, which shows homology to the mammalian AP-1 site. A second factor was found to bind a sequence (as103, ATAGCTAAGTGCTTACG) with homology to the CaMV 35S promoter as-1 element. The as103 element is present in both promoters and positioned around −360, so within the region determined to be indispensable for the response to auxin. A third factor was found binding to the −276/−190 region of both promoters. Combined, these data point to the relevance of a 90 bp region for auxin-induced activity of both tobacco genes. The ASF-1 like factor binding to the as103 element within this region might be involved in mediating the auxin response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainley WM, Walker JC, Nagao RT, Key JL: Sequence and characterization of two auxin-regulated genes from soybean. J Biol Chem 263: 10658–10666 (1988).

    PubMed  Google Scholar 

  2. Alliotte T, Tiré C, Engler G, Peleman J, Caplan A, Van Montagu M, Inzé D: An auxin-regulated gene of Arabidopsis thaliana encodes a DNA-binding protein. Plant Physiol 89: 743–752 (1989).

    Google Scholar 

  3. Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M: Phorbol esterinducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49: 729–739 (1987).

    Article  PubMed  Google Scholar 

  4. Armstrong GA, Weisshaar B, Hahlbrock K: Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell 4: 525–537 (1992).

    Article  PubMed  Google Scholar 

  5. Ballas N, Wong L-M, Theologis A: Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea (Pisum sativum). J Mol Biol 233: 580–596 (1993).

    Article  PubMed  Google Scholar 

  6. Bevan M: Binary Agrobacterium vector for transformation. Nucl Acids Res 12: 8711–8721 (1984).

    PubMed  Google Scholar 

  7. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7: 1513–1523 (1979).

    PubMed  Google Scholar 

  8. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of proteins utilising the principle of protein dye binding. Anal Biochem 72: 248–254 (1974).

    Article  Google Scholar 

  9. Coles B, Ketterer B: The role of glutathione and glutathione transferases in chemical carcinogenesis. CRC Crit Rev Biochem Mol Biol 25: 47–70 (1990).

    Google Scholar 

  10. Czarnecka E, Nagao RT, Key JL: Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein of soybean: Heavy-metal-induced inhibition of intron processing. Mol Cell Biol 8: 1113–1122 (1988).

    PubMed  Google Scholar 

  11. Daniel V: Glutathione S-transferases: gene structure and regulation of expression. Crit Rev Biochem Mol Biol 28: 173–207 (1993).

    PubMed  Google Scholar 

  12. Dominov JA, Stenzler L, Lee S, Schwarz JJ, Leisner S, Howell SH: Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cell by feedback regulation. Plant Cell 4: 451–461 (1992).

    Article  PubMed  Google Scholar 

  13. Droog FNJ: Promoter and functional analysis of an auxin-regulated tobacco gene family. Ph.D. thesis, Leiden University (1995).

  14. Droog FNJ, Hooykaas PJJ, Libbenga KR, van der Zaal EJ: Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity. Plant Mol Biol 21: 965–972 (1993).

    PubMed  Google Scholar 

  15. Dudler R, Hertig C, Rebman G, Bull J, Mauch F: A pathogen-induced wheat gene encodes a protein homologous to glutathione S-transferases. Mol Plant-Microbe Interact 4: 14–18 (1991).

    PubMed  Google Scholar 

  16. Ehrlich KC, Cary JW, Ehrlich M: A broad bean cDNA clone encoding a DNA-binding proteins resembling mammalian CREB in its sequence speceficity and DNA methylation sensitivity. Gene 117: 169–178 (1992).

    Article  PubMed  Google Scholar 

  17. Ellis JG, Llewellyn DJ, Walker JC, Dennis ES, Peacock WJ: The ocs element: a 16 base pair palindrome essential for activity of the octopine synthase enhancer. EMBO J 6: 3203–3208 (1987).

    Google Scholar 

  18. Ellis JG, Tokuhisha JG, Llewellyn D, Bouchez D, Singh K, Dennis ES, Peacock WJ: Does the ocs-element occur as a functional component of the promoter of plant genes? Plant J 4: 433–443 (1993).

    Article  PubMed  Google Scholar 

  19. Friling RS, Bergelson S, Daniel V: Two adjacent AP-1-like binding sites form the electrophile-responsive element of the murine glutathione-S-transferase Ya subunit gene. Proc Natl Acad Sci USA 89: 668–672 (1992).

    PubMed  Google Scholar 

  20. Fromm H, Katagiri F, Chua N-H: An octopine synthase enhancer element directs tissue-specific expression and binds ASF-1, a factor from tobacco nuclear extracts. Plant Cell 1: 977–984 (1989).

    Article  PubMed  Google Scholar 

  21. Guilfoyle TJ, Hagen G, Li Y, Ulmasov T, Liu Z, Stabala T, Gee: Auxin-regulated transcription. Aust J Plant Physiol 20: 489–502 (1993).

    Google Scholar 

  22. Hagen G, Guilfoyle TJ: Rapid induction of selective transcription by auxins. Mol Cell Biol 5: 1197–1203 (1984).

    Google Scholar 

  23. Hai T, Curran T: Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88: 3720–3724 (1991).

    PubMed  Google Scholar 

  24. Hill DE, Hope IA, Macke JP, Struhl K: Saturation mutagenesis of the yeast his3 regulatory site: requirement for transcriptional induction and for binding by GCN4 activator protein. Science 234: 451–457 (1986).

    PubMed  Google Scholar 

  25. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA: A binary vector strategy based on separation of Vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–181 (1983).

    Google Scholar 

  26. Hong JC, Nagao RT, Key JL: Characterization and sequence analysis of a developmentally regulated putative cell wall protein gene isolated from soybean. J Biol Chem 262: 8367–8376 (1987).

    PubMed  Google Scholar 

  27. Hope IA, Struhl K: Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46: 885–894 (1986).

    Article  PubMed  Google Scholar 

  28. Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  29. Itzhaki H, Woodson WR: Characterization of a ethylene-responsive glutathione S-transferase gene cluster in carnation. Plant Mol Biol 22: 43–58 (1993).

    PubMed  Google Scholar 

  30. Izawa T, Foster R, Chua N-H: Plant bZIP protein DNA binding specificity. J Mol Biol 230: 1131–1144 (1993).

    PubMed  Google Scholar 

  31. Jefferson RA: Assaying chimeric genes in plants: the GUS fusion system. Plant Mol Biol Rep 5: 387–405 (1987).

    Google Scholar 

  32. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensative and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    PubMed  Google Scholar 

  33. Katagiri F, Chua N-H: Plant transcription factors: present knowledge and future challenges. Trends Genet 8: 22–27 (1992).

    Article  PubMed  Google Scholar 

  34. Katagiri F, Lam E, Chua N-H: Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340: 727–730 (1989).

    Article  PubMed  Google Scholar 

  35. Kerppola TK, Curran T: Selective DNA binding by a variety of bZIP proteins. Mol Cell Biol 13: 5479–5489 (1993).

    PubMed  Google Scholar 

  36. Kim SR, Kim Y, An G: Identification of methyl jasmonate and salicylic acid response elements from nopaline synthase (nos) promoter. Plant Physiol 103: 97–103 (1993).

    PubMed  Google Scholar 

  37. Kim Y, Buckley K, Costa MA, An G: A 20 nucleotide upstream element is essential for the nopaline synthase (nos) promoter activity. Plant Mol Biol 24: 105–117 (1994).

    PubMed  Google Scholar 

  38. Kouzarides T, Ziff E: Behind the Fos and Jun leucine zipper. Cancer Cells 1: 71–76 (1989).

    PubMed  Google Scholar 

  39. Lam E, Benfey PN, Gilmartin PM, Fang R-X, Chua N-H: Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci USA 86: 7890–7894 (1989).

    PubMed  Google Scholar 

  40. Lam E, Katagiri F, Chua N-H: Plant nuclear factor ASF-1 binds to an essential region of the nopaline synthase promoter. J Biol Chem 265: 9909–9913 (1990).

    PubMed  Google Scholar 

  41. Lee W, Mitchell P, Tjian R: Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49: 741–752 (1987).

    Article  PubMed  Google Scholar 

  42. Liu X, Lam E: Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. J Biol Chem 1: 668–675 (1994).

    Article  Google Scholar 

  43. Mannervik B, Danielson UH: Glutathione transferases. Structure and catalytic activity. CRC Crit Rev Biochem 23: 283–337 (1988).

    PubMed  Google Scholar 

  44. Mattanovich D, Ruker F, da Camara Machado A, Laimer M, Regner F, Steinlkellner H, Himmler G, Katinger H: Efficient transformation of Agrobacterium spp. by electroporation. Nucl Acids Res 17: 6747 (1989).

    PubMed  Google Scholar 

  45. McClure BA, Guilfoyle T: Characterization of a class of small auxin-inducible soybean polyadenylated RNAs. Plant Mol Biol 9: 611–623 (1987).

    Google Scholar 

  46. Muller M, Knudsen S: The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J 4: 343–355 (1993).

    Article  PubMed  Google Scholar 

  47. Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).

    Google Scholar 

  48. Nagao RT, Goekjian VH, Hong JC, Key JL: Identification of protein-binding DNA sequences in an auxinregulated gene of soybean. Plant Mol Biol 21: 1147–1162 (1993).

    Article  PubMed  Google Scholar 

  49. Nehlin JO, Carlberg M, Ronne H: Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription. Nucl Acids Res 20: 5271–5278 (1992).

    PubMed  Google Scholar 

  50. Nguyen T, Rushmore TH, Pickett CB: Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. J Biol Chem 269: 13656–13662 (1994).

    PubMed  Google Scholar 

  51. Pickett CB, Lu AYH: Glutathione S-transferases: gene structure, regulation, and biological function. Annu Rev Biochem 58: 743–764 (1989).

    Article  PubMed  Google Scholar 

  52. Qin X-F, Holuigue L, Horvath DM, Chua NH: Immediate early activation by salicylic acid via the cauliflower mosaic virus as-1 element. Plant Cell 6: 863–874 (1994).

    Article  PubMed  Google Scholar 

  53. Rushmore TH, Morton MR, Pickett CB: The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266: 11632–11639 (1991).

    PubMed  Google Scholar 

  54. Rushmore TH, Pickett CB: Glutathione S-transferases, structure, regulation, and therapeutic implications. J Biol Chem 268: 11475–11478 (1993).

    PubMed  Google Scholar 

  55. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2n ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  56. Saul MW, Shilito RD, Negrutiu I: Direct DNA transfer to protoplasts with and without electroporation. In: Gelvin SB, Schilperoort RA, Verma DPS (eds), Plant Molecular Biology Manual, pp. A1/1-A1/16. Kluwer Academic Press, Dordrecht (1988).

    Google Scholar 

  57. Schindler U, Beckman H, Cashmore AR: TGA1 and G-box binding factors: two distinct classes of Arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell 4: 1309–1319 (1992).

    Article  PubMed  Google Scholar 

  58. Schindler U, Menkens AE, Beckmann H, Ecker JR, Cashmore AR: Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J 11: 1261–1273 (1992).

    PubMed  Google Scholar 

  59. Schmitz G, Theres K: Structural and functional analysis of the Bz2 locus of Zea mays: characterization of overlapping transcripts. Mol Gen Genet 233: 269–277 (1992).

    PubMed  Google Scholar 

  60. Tabata T, Nakayma T, Mikami K, Iwabuchi M: HBP-1a and HBP-1b: leucine zipper transcription factors of wheat. EMBO J 10: 1459–1467 (1991).

    PubMed  Google Scholar 

  61. Takahashi Y, Niwa Y, Machida Y, Nagata T: Location of the cis-acting auxin-responsive region in the promoter of the par gene from tobacco mesophyll protoplasts. Proc Natl Acad Sci USA 87: 8013–8016 (1990).

    PubMed  Google Scholar 

  62. Taylor TL, Fritzemeyer K-H, Hauser I, Kombrink E, Rohwer F, Schroder M, Strittmatter G, Hahlbrock K: Structural analysis and activation of a gene encoding a pathogenesis-related protein in potato. Mol Plant-Microbe Interact 3: 72–77 (1990).

    PubMed  Google Scholar 

  63. Theologis A, Huynh TV, Davis RW: Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J Mol Biol 183: 53–68 (1985).

    PubMed  Google Scholar 

  64. Timmerman KP: Molecular characterization of corn glutathione S-transferase isozymes involved in herbicide detoxication. Physiol Plant 77: 465–471 (1989).

    Google Scholar 

  65. Tokuhisa JG, Singh K, Dennis ES, Peacock WJ: A DNA-binding protein factor recognizes two binding domains within the octopine synthase enhancer element. Plant Cell 2: 215–224 (1990).

    Article  PubMed  Google Scholar 

  66. van der Zaal EJ, Droog FNJ, Boot CJM, Hensgens LAM, Hoge JHC, Schilperoort RA, Libbenga KR: Promoters of auxin-inducible genes can lead to auxin-inducible and root tip-specific expression. Plant Mol Biol 16: 983–998 (1991).

    Article  PubMed  Google Scholar 

  67. van der Zaal EJ, Memelink J, Mennes AM, Quint A, Libbenga KR: Auxin-induced mRNA species in tobacco cell cultures. Plant Mol Biol 10: 145–157 (1987).

    Google Scholar 

  68. Walden R, Czaja I, Schmulling T, Schell J: Rol genes alter hormonal requirements for protoplast growth and modify the expression of an auxin responsive promoter. Plant Cell Rep 12: 551–554 (1993).

    Article  Google Scholar 

  69. Walker JC, Key JL: Isolation of cloned cDNAs to auxin-responsive poly(A)+ RNAs of elongating soybean hypocotyl. Proc Natl Acad Sci USA 79: 7185–7189 (1982).

    Google Scholar 

  70. Wiegand RC, Shah DM, Mozer TJ, Harding EI, Diaz-Collier J, Saunders C, Jaworski EG, Tiemeier DC: Messenger RNA encoding a glutathione S-transferase responsible for herbicide tolerance in maize is induced in response to safener treatment. Plant Mol Biol 7: 235–243 (1986).

    Google Scholar 

  71. Yoshioka Y, Matsumoto S, Kojima S, Ohshima K, Okada N, Machida Y: Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. Proc Natl Acad Sci USA 90: 6562–6566 (1993).

    PubMed  Google Scholar 

  72. Zhang B, Singh KB: ocs element promoter sequences are activated by auxin and salicylic acid in Arabidopsis. Proc Natl Acad Sci USA 91: 2507–2511 (1994).

    PubMed  Google Scholar 

  73. Ziff EB: Transcription factors: a new family gathers at the cAMP response site. Trends Genet 6: 69–72 (1990).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Droog, F., Spek, A., van der Kooy, A. et al. Promoter analysis of the auxin-regulated tobacco glutathione S-transferase genes Nt103-1 and Nt103-35 . Plant Mol Biol 29, 413–429 (1995). https://doi.org/10.1007/BF00020974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020974

Key words

Navigation