Skip to main content
Log in

Identification of protein-binding DNA sequences in an auxin-regulated gene of soybean

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The promoter region of a soybean auxin-responsive gene, GmAux28, was analyzed to identify protein-binding DNA sequences that may be involved in regulation of expression. Using DNase I footprinting and gel mobility shift assays, multiple regions of interaction, including eight major protein-binding sites, were observed in the GmAux28 gene. Two sequence motifs, TGACGACA and TCCACGTGTC, related to as-1/Hex and G-box elements, respectively, found in several plant promoters, were identified. Four distinct A/T-rich domains were identified; such A/T-rich domains appear to modulate, but not to specify, the expression of many genes. Two new sequence motifs, delta-1 (D1) and delta-4 (D4) were also identified. D1 and D4 share a very similar core sequence, TAGTxxCTGT and TAGTxCTGT, respectively. In gel mobility shift analyses, D1 and D4 elements exhibit a complex interaction of binding proteins. The GmAux22 promoter also contains D1-related elements which compete with the GmAux28 elements. Sequence comparisons have identified D1/D4-like sequences in several other auxin-responsive genes suggesting the possible importance of D1/D4 and the respective binding proteins in the regulation of expression of these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainley WM, Walker JC, Nagao RT, Key JL: Sequence and characterization of two auxin-regulated genes from soybean. J Biol Chem 263: 10658–10666 (1988).

    PubMed  Google Scholar 

  2. alliotte T, Tiré C, Engler G, Peleman J, Caplan A, Van Montagu M, Inzé D: An auxin-regulated gene of Arabidopsis thaliana encodes a DNA-binding protein. Plant Physiol 89: 743–752 (1989).

    Google Scholar 

  3. An G, Costa MA, Ha S-B: Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell 2: 225–233 (1990).

    Article  PubMed  Google Scholar 

  4. Armstrong GA, Weisshaar B, Hahlbrock K: Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell 4: 525–537 (1992).

    Article  PubMed  Google Scholar 

  5. Baker J, Steele C, Dure LIII Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11: 277–291 (1988).

    Google Scholar 

  6. Baulcombe DC, Key JL: Polyadenylated RNA sequences which are reduced in concentration following auxin treatment of soybean hypocotyls. J Biol Chem 255: 8907–8913 (1980).

    Google Scholar 

  7. Block A, Dangl JL, Hahlbrock K, Schulze-Lefert P: Functional borders, genetic fine structure, and distance requirements of cis elements light responsiveness of the parsley chalcone synthase promoter. Proc Natl Acad Sci USA 87: 5387–5391 (1990).

    PubMed  Google Scholar 

  8. Bouchez D, Tokuhisa JG, Llewellyn DJ, Dennis ES, Ellis JG: The ocs-element is a component of the promoters of several T-DNA and plant viral genes. EMBO J 8: 4197–4204 (1989).

    PubMed  Google Scholar 

  9. Bustos MM, Guiltinan MJ, Jordano J, Begum D, Kalkan FA, Hall TC: Regulation of β-glucuronidase expression in transgenic tobacco plants by an A/T-rich, cis-acting sequence found upstream of a French bean β-phaseolin gene. Plant Cell 1: 839–853 (1989).

    Article  PubMed  Google Scholar 

  10. Castresana C, Garcia-Luque I, Alonso E, Malik VS, Cashmore AR: Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia. EMBO J 7: 1929–1936 (1988).

    PubMed  Google Scholar 

  11. Comb M, Birnberg NC, Seasholtz A, Herbert E, Goodman HM: A cyclic AMP-and phorbol ester-inducible DNA element. Nature 323: 353–356 (1986).

    PubMed  Google Scholar 

  12. Conner TW, Goekjian VH, Lafayette PR, Key JL: Structure and expression of two auxin-inducible genes from Arabidopsis. Plant Mol Biol 15: 623–632 (1990).

    PubMed  Google Scholar 

  13. Czarnecka E, Nagao RT, Key JL, Gurley WB: Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein of soybean: heavy-metal-induced inhibition of intron processing. Mol Cell Biol 8: 1113–1122 (1988).

    PubMed  Google Scholar 

  14. Davies PJ: Plant Hormones and their Role in Plant Growth and Development. Martinus Nijhoff, Dordrecht, Netherlands (1987).

    Google Scholar 

  15. Dignam JD, Martin PL, Shastry BS, Roeder RG: Eukaryotic gene transcription with purified components. Meth Enzymol 101: 582–598 (1983).

    PubMed  Google Scholar 

  16. Dynan WS, Tjian R: The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35: 79–87 (1983).

    Article  PubMed  Google Scholar 

  17. Forde BG, Freeman J, Oliver JE, Pineda M: Nuclear factors interact with conserved A/T-rich elements upstream of a nodule-enhanced glutamine synthetase gene from French bean. Plant Cell 2: 925–939 (1990).

    Article  PubMed  Google Scholar 

  18. Fromm H, Katagiri F, Chua N-H: An octopine synthase enhancer element directs tissue-specific expression and binds ASF-1, a factor from tobacco nuclear extracts. Plant Cell 1: 977–984 (1989).

    Article  PubMed  Google Scholar 

  19. Galas DJ, Schmitz A: DNAase footprinting: a simple method for the detection of protein-DNA binding specificity. Nucl Acids Res 5: 3157–3170 (1978).

    PubMed  Google Scholar 

  20. Gee MA, Hagen G, Guilfoyle TJ: Tissue-specific and organ-specific expression of soybean auxin-responsive transcripts GH3 and SAURs. Plant Cell 3: 419–430 (1991).

    Article  PubMed  Google Scholar 

  21. Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR: An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci USA 85: 7089–7093 (1988).

    PubMed  Google Scholar 

  22. Guilfoyle TJ: Auxin-regulated gene expression in higher plants. CRC Crit Rev Plant Sci 4: 247–276 (1986).

    Google Scholar 

  23. Guiltinan MJ, Marcotte WR, Quatrano RS: A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271 (1990).

    PubMed  Google Scholar 

  24. Hagen G: Molecular approaches to understanding auxin action. New Biol 1: 19–23 (1989).

    PubMed  Google Scholar 

  25. Hagen G, Kleinschmidt A, Guilfoyle T: Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162: 147–153 (1984).

    Google Scholar 

  26. Hagen G, Uhrhammer N, Guilfoyle TJ: Regulation of expression of an auxin-induced soybean sequence by cadmium. J Biol Chem 263: 6442–6446 (1988).

    PubMed  Google Scholar 

  27. Jacobsen K, Laursen NB, Jensen EO, Marcker A, Poulsen C, Marcker KA: HMG I-like proteins from leaf and nodule nuclei interact with different at motifs in soybean nodulin promoters. Plant Cell 2: 85–94 (1990).

    Article  PubMed  Google Scholar 

  28. Key JL: Modulation of gene expression by auxin: BioEssays 11: 52–58 (1989).

    PubMed  Google Scholar 

  29. Lam E, Benfey PN, Gilmartin PM, Fang R-X, Chua N-H: Site-specific mutation alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci USA 86: 7890–7894 (1989).

    PubMed  Google Scholar 

  30. Marcotte WRJr, Russell SH, Quatrano RS: Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1: 969–976 (1989).

    Article  PubMed  Google Scholar 

  31. McClure BA, Guilfoyle T: Characterization of a class of small auxin-inducible soybean polyadenylated RNAs. Plant Mol Biol 9: 611–623 (1987).

    Google Scholar 

  32. McClure BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ: Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1: 229–239 (1989).

    Article  PubMed  Google Scholar 

  33. McKendree WL, Paul A-L, DeLisle AJ, Ferl RJ: In vivo and in vitro characterization of protein interactions with the dyad G-box of the Arabidopsis Adh gene. Plant Cell 2: 207–214 (1990).

    Article  PubMed  Google Scholar 

  34. Mundy J, Chua NH: Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7: 2279–2286 (1988).

    PubMed  Google Scholar 

  35. Oeda K, Salinas J, Chua N-H: A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J 10: 1793–1802 (1991).

    PubMed  Google Scholar 

  36. Schindler U, Cashmore AR: Photoregulated gene expression may involve ubiquitous DNA binding proteins. EMBO J 9: 3415–3427 (1990).

    PubMed  Google Scholar 

  37. Schindler U, Menkens AE, Beckmann H, Ecker JR, Cashmore AR: Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J 11: 1261–1273 (1992).

    PubMed  Google Scholar 

  38. Schindler U, Terzaghi W, Beckmann H, Kadesch T, Cashmore AR: DNA binding site preferences and transcriptional activation properties of the Arabidopsis transcription factor GBF1. EMBO J 11: 1275–1289 (1992).

    PubMed  Google Scholar 

  39. Schindler U, Beckmann U, Cashmore AR: TGA1 and G-box binding factors: Two distinct classes of Arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell 4: 1309–1319 (1992).

    Article  PubMed  Google Scholar 

  40. Schulze-Lefert P, Becker-André M, Schulz W, Hahlbrock K, Dangl JL: Functional architecture of the lightresponsive chalcone synthase promoter from parsley. Plant Cell 1: 707–714 (1989).

    Article  PubMed  Google Scholar 

  41. Schulze-Lefert P, Dangl JL, Becker-André M, Hahlbrock K, Schulz W: Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J 8: 651–656 (1989).

    PubMed  Google Scholar 

  42. Singh H, Sen R, Baltimore D, Sharp PA: A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319: 154–158 (1986).

    PubMed  Google Scholar 

  43. Solomon MJ, Strauss F, Varshavsky A: A mammalian high mobility group protein recognizes any stretch of six A-T base pairs in duplex DNA. Proc Natl Acad Sci USA 83: 1276–1280 (1986).

    PubMed  Google Scholar 

  44. Staiger D, Kaulen H, Schell J: A CACGTG motif of the Antirrhinum majus chalcone synthase promoter is recognized by an evolutionarily conserved nuclear protein. Proc Natl Acad Sci USA 86: 6930–6934 (1989).

    PubMed  Google Scholar 

  45. Tabata T, Takase H, Takayama S, Mikami K, Nakatsuka A, Kawata T, Nakayama T, Iwabuchi M: A protein that binds to a cis-acting element of wheat histone genes has a leucine zipper motif. Science 245: 965–967 (1989).

    PubMed  Google Scholar 

  46. Takahashi Y, Niwa Y, Machida Y, Nagata T: Location of the cis-acting auxin-responsive region in the promoter of the par gene from tobacco mesophyll protoplasts. Proc Natl Acad Sci USA 87: 8013–8016 (1990).

    PubMed  Google Scholar 

  47. Theologis A: Rapid gene regulation by auxin. Annu Rev Plant Physiol 37: 407–438 (1986).

    Google Scholar 

  48. Theologis A, Huynh TV, Davis RW: Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J Mol Biol 183: 53–68 (1985).

    PubMed  Google Scholar 

  49. van der Zaal EJ, Memelink J, Mennes AM, Quint A, Libbenga KR. Auxin-induced mRNA species in tobacco cell cultures. Plant Mol Biol 10: 145–157 (1987).

    Google Scholar 

  50. Walker JC, Key JL: Isolation of cloned cDNAs to auxin-responsive poly(A)+ RNAs of elongating soybean hypocotyl. Proc Natl Acad Sci USA 79: 7185–7189 (1982).

    Google Scholar 

  51. Walker JC, Legocka J, Edelman L, Key JL: An analysis of growth regulator interactions and gene expression during auxin-induced cell elongation using cloned complementary DNAs to auxin-responsive messenger RNAs. Plant Physiol 77: 847–850 (1985).

    Google Scholar 

  52. Weising K, Kahl G: Towards an understanding of plant gene regulation: the action of nuclear factors Z Naturforsch 46c: 1–11 (1991).

    Google Scholar 

  53. Weisshaar B Armstrong GA, Block A, da Costa e Silva O, Hahlbrock K: Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J 10: 1777–1786 (1991).

    PubMed  Google Scholar 

  54. Williams ME, Chua N-H: Characterization of a nuclear protein from cauliflower which binds a sequence which is sufficient to confer shoot apical meristem specific expression to a minimal promoter. J Cell Biochem 15A: 109 (1991).

    Google Scholar 

  55. Williams ME, Foster R, Chua N-H: Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell 4: 485–496 (1992).

    Article  PubMed  Google Scholar 

  56. Wu C: Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature 311: 81–84 (1984).

    PubMed  Google Scholar 

  57. Wyatt RE, Ainley WM, Nagao RT, Key JL: Expression of the Arabidopsis AtAux2-11 auxin-responsive gene in transgenic plants. Plant Mol Biol, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagao, R.T., Goekjian, V.H., Hong, J.C. et al. Identification of protein-binding DNA sequences in an auxin-regulated gene of soybean. Plant Mol Biol 21, 1147–1162 (1993). https://doi.org/10.1007/BF00023610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023610

Key words

Navigation