Advertisement

Drugs

, Volume 78, Issue 16, pp 1665–1703 | Cite as

Medical Use of Cannabinoids

  • Ana Isabel Fraguas-Sánchez
  • Ana Isabel Torres-Suárez
Review Article

Abstract

Cannabinoid receptors, endocannabinoids and the enzymes responsible for their biosynthesis and degradation constitute the endocannabinoid system. In recent decades, the endocannabinoid system has attracted considerable interest as a potential therapeutic target in numerous pathological conditions. Its involvement in several physiological processes is well known, such as in energy balance, appetite stimulation, blood pressure, pain modulation, embryogenesis, nausea and vomiting control, memory, learning and immune response, among others, as well as in pathological conditions where it exerts a protective role in the development of certain disorders. As a result, it has been reported that changes in endocannabinoid levels may be related to neurological diseases such as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and multiple sclerosis, as well as anorexia and irritable bowel syndrome. Alterations in the endocannabinoid system have also been associated with cancer, affecting the growth, migration and invasion of some tumours. Cannabinoids have been tested in several cancer types, including brain, breast and prostate cancers. Cannabinoids have shown promise as analgesics for the treatment of both inflammatory and neuropathic pain. There is also evidence for a role of the endocannabinoid system in the control of emotional states, and cannabinoids could prove useful in decreasing and palliating post-traumatic stress disorder symptoms and anxiolytic disorders. The role of the endocannabinoid system in addictions has also been examined, and cannabinoids have been postulated as alternative and co-adjuvant treatments in some abuse syndromes, mainly in ethanol and opioid abuses. The expression of the endocannabinoid system in the eye suggests that it could be a potential therapeutic target for eye diseases. Considering the importance of the endocannabinoid system and the therapeutic potential of cannabinoids in this vast number of medical conditions, several clinical studies with cannabinoid-based medications are ongoing. In addition, some cannabinoid-based medications have already been approved in various countries, including nabilone and dronabinol capsules for the treatment of nausea and vomiting associated with chemotherapy, dronabinol capsules for anorexia, an oral solution of dronabinol for both vomiting associated with chemotherapy and anorexia, a Δ9-tetrahydrocannabinol/cannabidiol oromucosal spray for pain related to cancer and for spasticity and pain associated with multiple sclerosis, and an oral solution of cannabidiol for Dravet and Lennox–Gastaut syndromes. Here, we review the available efficacy, safety and tolerability data for cannabinoids in a range of medical conditions.

Notes

Compliance with Ethical Standards

Funding

No funding was received specifically for the preparation of this review.

Conflict of interest

Ana Isabel Fraguas-Sánchez was granted a research fellowship (FPU14/06441) from the Spanish Ministry of Education. Ana Isabel Fraguas-Sánchez and Ana Isabel Torres-Suárez have no conflicts of interest that are directly relevant to the contents of this article.

References

  1. 1.
    Maule WJ. Medical uses of marijuana (Cannabis sativa): fact or fallacy? Br J Biomed Sci. 2015;72(2):85–91.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zuardi AW. History of cannabis as a medicine: a review. Rev Bras Psiquiatr. 2006;28(2):153–7.  https://doi.org/10.1590/S1516-44462006000200015.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Touw M. The religious and medicinal uses of Cannabis in China, India and Tibet. J Psychoactive Drugs. 1981;13(1):23–34.  https://doi.org/10.1080/02791072.1981.10471447.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kalant H. Medicinal use of cannabis: history and current status. Pain Res Manag. 2001;6(2):80–91.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mikuriya TH. Marijuana in medicine: past, present and future. Calif Med. 1969;110(1):34–40.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Pisanti S, Bifulco M. Modern history of medical cannabis: from widespread use to prohibitionism and back. Trends Pharmacol Sci. 2017;38(3):195–8.  https://doi.org/10.1016/j.tips.2016.12.002.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mechoulam R. Cannabinoids as therapeutic agents. Boca Raton: CRC Press; 1986.Google Scholar
  8. 8.
    Svizenska I, Dubovy P, Sulcova A. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures: a short review. Pharmacol Biochem Behav. 2008;90(4):501–11.  https://doi.org/10.1016/j.pbb.2008.05.010.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Console-Bram L, Marcu J, Abood ME. Cannabinoid receptors: nomenclature and pharmacological principles. Prog Neuropsychopharmacol Biol Psychiatry. 2012;38(1):4–15.  https://doi.org/10.1016/j.pnpbp.2012.02.009.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Szulakowska A, Milnerowicz H. Cannabis sativa in the light of scientific research. Adv Clin Exp Med. 2007;16(6):807–15.Google Scholar
  11. 11.
    Kendall DA, Yudowski GA. Cannabinoid receptors in the central nervous system: their signaling and roles in disease. Front Cell Neurosci. 2016;10:294.  https://doi.org/10.3389/fncel.2016.00294.CrossRefGoogle Scholar
  12. 12.
    Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310(5746):329–32.  https://doi.org/10.1126/science.1115740.CrossRefGoogle Scholar
  13. 13.
    Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, et al. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci. 2006;1074:514–36.  https://doi.org/10.1196/annals.1369.052.CrossRefGoogle Scholar
  14. 14.
    Henstridge CM. Off-target cannabinoid effects mediated by GPR55. Pharmacology. 2012;89(3–4):179–87.  https://doi.org/10.1159/000336872.CrossRefGoogle Scholar
  15. 15.
    Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol. 2003;163(3):463–8.  https://doi.org/10.1083/jcb.200305129.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bisogno T, Melck D, De Petrocellis L, Di Marzo V. Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin. J Neurochem. 1999;72(5):2113–9.CrossRefGoogle Scholar
  17. 17.
    Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384(6604):83–7.  https://doi.org/10.1038/384083a0.CrossRefGoogle Scholar
  18. 18.
    Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA. 2002;99(16):10819–24.  https://doi.org/10.1073/pnas.152334899.CrossRefGoogle Scholar
  19. 19.
    Fraguas-Sánchez AI, Fernández-Carballido A, Torres-Suárez AI. Phyto-, endo- and synthetic cannabinoids: promising chemotherapeutic agents in the treatment of breast and prostate carcinomas. Expert Opin Investig Drugs. 2016;25(11):1311–23.  https://doi.org/10.1080/13543784.2016.1236913.CrossRefGoogle Scholar
  20. 20.
    Schurman LD, Lichtman AH. Endocannabinoids: a promising impact for traumatic brain injury. Front Pharmacol. 2017;8:69.  https://doi.org/10.3389/fphar.2017.00069.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev. 2006;27(1):73–100.  https://doi.org/10.1210/er.2005-0009.CrossRefGoogle Scholar
  22. 22.
    Cunha P, Romão AM, Mascarenhas-Melo F, Teixeira HM, Reis F. Endocannabinoid system in cardiovascular disorders: new pharmacotherapeutic opportunities. J Pharm Bioallied Sci. 2011;3(3):350–60.  https://doi.org/10.4103/0975-7406.84435.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Katchan V, David P, Shoenfeld Y. Cannabinoids and autoimmune diseases: a systematic review. Autoimmun Rev. 2016;15(6):513–28.  https://doi.org/10.1016/j.autrev.2016.02.008.CrossRefGoogle Scholar
  24. 24.
    Laprairie RB, Bagher AM, Denovan-Wright EM. Cannabinoid receptor ligand bias: implications in the central nervous system. Curr Opin Pharmacol. 2017;32:32–43.  https://doi.org/10.1016/j.coph.2016.10.005.CrossRefGoogle Scholar
  25. 25.
    Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov. 2008;7(5):438–55.CrossRefGoogle Scholar
  26. 26.
    Pacher P, Mechoulam R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res. 2011;50(2):193–211.  https://doi.org/10.1016/j.plipres.2011.01.001.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hasenoehrl C, Taschler U, Storr M, Schicho R. The gastrointestinal tract: a central organ of cannabinoid signaling in health and disease. Neurogastroenterol Motil. 2016;28(12):1765–80.  https://doi.org/10.1111/nmo.12931.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ligresti A, De Petrocellis L, Di Marzo V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol Rev. 2016;96(4):1593–659.  https://doi.org/10.1152/physrev.00002.2016.CrossRefGoogle Scholar
  29. 29.
    Bridgeman MB, Abazia DT. Medicinal cannabis: history, pharmacology, and implications for the acute care setting. Pharm Ther. 2017;42(3):180–8.Google Scholar
  30. 30.
    Pyszniak M, Tabarkiewicz J, Luszczki JJ. Endocannabinoid system as a regulator of tumor cell malignancy: biological pathways and clinical significance. Onco Targets Ther. 2016;9:4323–36.  https://doi.org/10.2147/ott.s106944.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pertwee RG. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos Trans R Soc Lond B Biol Sci. 2012;367(1607):3353–63.  https://doi.org/10.1098/rstb.2011.0381.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nikan M, Nabavi SM, Manayi A. Ligands for cannabinoid receptors, promising anticancer agents. Life Sci. 2016;146:124–30.  https://doi.org/10.1016/j.lfs.2015.12.053.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tegeder I. Endocannabinoids as guardians of metastasis. Int J Mol Sci. 2016;17(2):230.  https://doi.org/10.3390/ijms17020230.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Benito C, Romero JP, Tolon RM, Clemente D, Docagne F, Hillard CJ, et al. Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci. 2007;27(9):2396–402.  https://doi.org/10.1523/jneurosci.4814-06.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jean-Gilles L, Feng S, Tench CR, Chapman V, Kendall DA, Barrett DA, et al. Plasma endocannabinoid levels in multiple sclerosis. J Neurol Sci. 2009;287(1–2):212–5.  https://doi.org/10.1016/j.jns.2009.07.021.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Centonze D, Bari M, Rossi S, Prosperetti C, Furlan R, Fezza F, et al. The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain. 2007;130(Pt 10):2543–53.  https://doi.org/10.1093/brain/awm160.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sanchez Lopez AJ, Roman-Vega L, Ramil Tojeiro E, Giuffrida A, Garcia-Merino A. Regulation of cannabinoid receptor gene expression and endocannabinoid levels in lymphocyte subsets by interferon-beta: a longitudinal study in multiple sclerosis patients. Clin Exp Immunol. 2015;179(1):119–27.  https://doi.org/10.1111/cei.12443.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Makriyannis A, et al. Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J. 2001;15(2):300–2.  https://doi.org/10.1096/fj.00-0399fje.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Huffman JW, et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature. 2000;404(6773):84–7.  https://doi.org/10.1038/35003583.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pryce G, Baker D. Control of spasticity in a multiple sclerosis model is mediated by CB1, not CB2, cannabinoid receptors. Br J Pharmacol. 2007;150(4):519–25.  https://doi.org/10.1038/sj.bjp.0707003.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pryce G, Cabranes A, Fernandez-Ruiz J, Bisogno T, Di Marzo V, Long JZ, et al. Control of experimental spasticity by targeting the degradation of endocannabinoids using selective fatty acid amide hydrolase inhibitors. Mult Scler. 2013;19(14):1896–904.  https://doi.org/10.1177/1352458513485982.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bernal-Chico A, Canedo M, Manterola A, Victoria Sanchez-Gomez M, Perez-Samartin A, Rodriguez-Puertas R, et al. Blockade of monoacylglycerol lipase inhibits oligodendrocyte excitotoxicity and prevents demyelination in vivo. Glia. 2015;63(1):163–76.  https://doi.org/10.1002/glia.22742.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hernandez-Torres G, Cipriano M, Heden E, Bjorklund E, Canales A, Zian D, et al. A reversible and selective inhibitor of monoacylglycerol lipase ameliorates multiple sclerosis. Angew Chem Int Ed Engl. 2014;53(50):13765–70.  https://doi.org/10.1002/anie.201407807.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Feliu A, Bonilla Del Rio I, Carrillo-Salinas FJ, Hernandez-Torres G. 2-Arachidonoylglycerol reduces proteoglycans and enhances remyelination in a progressive model of demyelination. J Neurosci. 2017;37(35):8385–98.  https://doi.org/10.1523/jneurosci.2900-16.2017.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Elliott DM, Singh N, Nagarkatti M, Nagarkatti PS. Cannabidiol attenuates experimental autoimmune encephalomyelitis model of multiple sclerosis through induction of myeloid-derived suppressor cells. Front Immunol. 2018;9:1782.  https://doi.org/10.3389/fimmu.2018.01782.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Killestein J, Hoogervorst EL, Reif M, Kalkers NF, Van Loenen AC, Staats PG, et al. Safety, tolerability, and efficacy of orally administered cannabinoids in MS. Neurology. 2002;58(9):1404–7.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ungerleider JT, Andyrsiak T, Fairbanks L, Ellison GW, Myers LW. Delta-9-THC in the treatment of spasticity associated with multiple sclerosis. Adv Alcohol Subst Abuse. 1987;7(1):39–50.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zajicek J, Fox P, Sanders H, Wright D, Vickery J, Nunn A, et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet. 2003;362(9395):1517–26.  https://doi.org/10.1016/s0140-6736(03)14738-1.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zajicek JP, Sanders HP, Wright DE, Vickery PJ, Ingram WM, Reilly SM, et al. Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up. J Neurol Neurosurg Psychiatry. 2005;76(12):1664–9.  https://doi.org/10.1136/jnnp.2005.070136.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zajicek JP, Hobart JC, Slade A, Barnes D, Mattison PG. Multiple sclerosis and extract of cannabis: results of the MUSEC trial. J Neurol Neurosurg Psychiatry. 2012;83(11):1125–32.  https://doi.org/10.1136/jnnp-2012-302468.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wade DT, Makela P, Robson P, House H, Bateman C. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler. 2004;10(4):434–41.  https://doi.org/10.1191/1352458504ms1082oa.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Collin C, Davies P, Mutiboko IK, Ratcliffe S. Randomized controlled trial of cannabis-based medicine in spasticity caused by multiple sclerosis. Eur J Neurol. 2007;14(3):290–6.  https://doi.org/10.1111/j.1468-1331.2006.01639.x.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Collin C, Ehler E, Waberzinek G, Alsindi Z, Davies P, Powell K, et al. A double-blind, randomized, placebo-controlled, parallel-group study of Sativex, in subjects with symptoms of spasticity due to multiple sclerosis. Neurol Res. 2010;32(5):451–9.  https://doi.org/10.1179/016164109x12590518685660.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Notcutt W, Langford R, Davies P, Ratcliffe S, Potts R. A placebo-controlled, parallel-group, randomized withdrawal study of subjects with symptoms of spasticity due to multiple sclerosis who are receiving long-term Sativex® (nabiximols). Mult Scler. 2012;18(2):219–28.  https://doi.org/10.1177/1352458511419700.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Novotna A, Mares J, Ratcliffe S, Novakova I, Vachova M, Zapletalova O, et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols* (Sativex®), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur J Neurol. 2011;18(9):1122–31.  https://doi.org/10.1111/j.1468-1331.2010.03328.x.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rog DJ, Nurmikko TJ, Friede T, Young CA. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology. 2005;65(6):812–9.  https://doi.org/10.1212/01.wnl.0000176753.45410.8b.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rog DJ, Nurmikko TJ, Young CA. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clin Ther. 2007;29(9):2068–79.  https://doi.org/10.1016/j.clinthera.2007.09.013.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Brady CM, DasGupta R, Dalton C, Wiseman OJ, Berkley KJ, Fowler CJ. An open-label pilot study of cannabis-based extracts for bladder dysfunction in advanced multiple sclerosis. Mult Scler. 2004;10(4):425–33.  https://doi.org/10.1191/1352458504ms1063oa.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Freeman RM, Adekanmi O, Waterfield MR, Waterfield AE, Wright D, Zajicek J. The effect of cannabis on urge incontinence in patients with multiple sclerosis: a multicentre, randomised placebo-controlled trial (CAMS-LUTS). Int Urogynecol J Pelvic Floor Dysfunct. 2006;17(6):636–41.  https://doi.org/10.1007/s00192-006-0086-x.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kavia RB, De Ridder D, Constantinescu CS, Stott CG, Fowler CJ. Randomized controlled trial of Sativex to treat detrusor overactivity in multiple sclerosis. Mult Scler. 2010;16(11):1349–59.  https://doi.org/10.1177/1352458510378020.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Arevalo-Martin A, Vela JM, Molina-Holgado E, Borrell J, Guaza C. Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci. 2003;23(7):2511–6.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Croxford JL, Miller SD. Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R + WIN55,212. J Clin Investig. 2003;111(8):1231–40.  https://doi.org/10.1172/jci17652.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Killestein J, Hoogervorst EL, Reif M, Blauw B, Smits M, Uitdehaag BM, et al. Immunomodulatory effects of orally administered cannabinoids in multiple sclerosis. J Neuroimmunol. 2003;137(1–2):140–3.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zajicek J, Ball S, Wright D, Vickery J, Nunn A, Miller D, et al. Effect of dronabinol on progression in progressive multiple sclerosis (CUPID): a randomised, placebo-controlled trial. Lancet Neurol. 2013;12(9):857–65.  https://doi.org/10.1016/s1474-4422(13)70159-5.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003;302(5642):84–8.  https://doi.org/10.1126/science.1088208.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wallace MJ, Blair RE, Falenski KW, Martin BR, DeLorenzo RJ. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther. 2003;307(1):129–37.  https://doi.org/10.1124/jpet.103.051920.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Karanian DA, Karim SL, Wood JT, Williams JS, Lin S, Makriyannis A, et al. Endocannabinoid enhancement protects against kainic acid-induced seizures and associated brain damage. J Pharmacol Exp Ther. 2007;322(3):1059–66.  https://doi.org/10.1124/jpet.107.120147.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Naidoo V, Karanian DA, Vadivel SK, Locklear JR, Wood JT, Nasr M, et al. Equipotent inhibition of fatty acid amide hydrolase and monoacylglycerol lipase: dual targets of the endocannabinoid system to protect against seizure pathology. Neurotherapeutics. 2012;9(4):801–13.  https://doi.org/10.1007/s13311-011-0100-y.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Shirzadian A, Ostadhadi S, Hassanipour M, Shafaroodi H, Khoshnoodi M, Haj-Mirzaian A, et al. Acute foot-shock stress decreased seizure susceptibility against pentylenetetrazole-induced seizures in mice: interaction between endogenous opioids and cannabinoids. Epilepsy Behav. 2018;87:25–31.  https://doi.org/10.1016/j.yebeh.2018.06.035.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hill AJ, Mercier MS, Hill TD, Glyn SE, Jones NA, Yamasaki Y, et al. Cannabidivarin is anticonvulsant in mouse and rat. Br J Pharmacol. 2012;167(8):1629–42.  https://doi.org/10.1111/j.1476-5381.2012.02207.x.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Amada N, Yamasaki Y, Williams CM, Whalley BJ. Cannabidivarin (CBDV) suppresses pentylenetetrazole (PTZ)-induced increases in epilepsy-related gene expression. PeerJ. 2013;1:e214.  https://doi.org/10.7717/peerj.214.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hill TD, Cascio MG, Romano B, Duncan M, Pertwee RG, Williams CM, et al. Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br J Pharmacol. 2013;170(3):679–92.  https://doi.org/10.1111/bph.12321.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Iannotti FA, Hill CL, Leo A, Alhusaini A, Soubrane C, Mazzarella E, et al. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci. 2014;5(11):1131–41.  https://doi.org/10.1021/cn5000524.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ellison JM, Gelwan E, Ogletree J. Complex partial seizure symptoms affected by marijuana abuse. J Clin Psychiatry. 1990;51(10):439–40.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Mortati K, Dworetzky B, Devinsky O. Marijuana: an effective antiepileptic treatment in partial epilepsy? A case report and review of the literature. Rev Neurol Dis. 2007;4(2):103–6.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Gross DW, Hamm J, Ashworth NL, Quigley D. Marijuana use and epilepsy: prevalence in patients of a tertiary care epilepsy center. Neurology. 2004;62(11):2095–7.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hamerle M, Ghaeni L, Kowski A, Weissinger F, Holtkamp M. Cannabis and other illicit drug use in epilepsy patients. Eur J Neurol. 2014;21(1):167–70.  https://doi.org/10.1111/ene.12081.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Porter BE, Jacobson C. Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav. 2013;29(3):574–7.  https://doi.org/10.1016/j.yebeh.2013.08.037.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Hussain SA, Zhou R, Jacobson C, Weng J, Cheng E, Lay J, et al. Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: a potential role for infantile spasms and Lennox–Gastaut syndrome. Epilepsy Behav. 2015;47:138–41.  https://doi.org/10.1016/j.yebeh.2015.04.009.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Tzadok M, Uliel-Siboni S, Linder I, Kramer U, Epstein O, Menascu S, et al. CBD-enriched medical cannabis for intractable pediatric epilepsy: the current Israeli experience. Seizure. 2016;35:41–4.  https://doi.org/10.1016/j.seizure.2016.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Press CA, Knupp KG, Chapman KE. Parental reporting of response to oral cannabis extracts for treatment of refractory epilepsy. Epilepsy Behav. 2015;45:49–52.  https://doi.org/10.1016/j.yebeh.2015.02.043.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Treat L, Chapman KE, Colborn KL, Knupp KG. Duration of use of oral cannabis extract in a cohort of pediatric epilepsy patients. Epilepsia. 2017;58(1):123–7.  https://doi.org/10.1111/epi.13617.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Maa E, Figi P. The case for medical marijuana in epilepsy. Epilepsia. 2014;55(6):783–6.  https://doi.org/10.1111/epi.12610.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Gofshteyn JS, Wilfong A, Devinsky O, Bluvstein J, Charuta J, Ciliberto MA, et al. Cannabidiol as a potential treatment for febrile infection-related epilepsy syndrome (FIRES) in the acute and chronic phases. J Child Neurol. 2017;32(1):35–40.  https://doi.org/10.1177/0883073816669450.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Devinsky O, Cross JH, Laux L, Marsh E, Miller I, Nabbout R, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376(21):2011–20.  https://doi.org/10.1056/NEJMoa1611618.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 2016;15(3):270–8.  https://doi.org/10.1016/s1474-4422(15)00379-8.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Suraev A, Lintzeris N, Stuart J, Kevin RC, Blackburn R, Richards E, et al. Composition and use of cannabis extracts for childhood eilepsy in the Australian community. Sci Rep. 2018;8(1):10154.  https://doi.org/10.1038/s41598-018-28127-0.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    O’Connell BK, Gloss D, Devinsky O. Cannabinoids in treatment-resistant epilepsy: a review. Epilepsy Behav. 2017;70(Pt B):341–8.  https://doi.org/10.1016/j.yebeh.2016.11.012.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Reddy DS, Golub VM. The pharmacological basis of cannabis therapy for epilepsy. J Pharmacol Exp Ther. 2016;357(1):45–55.  https://doi.org/10.1124/jpet.115.230151.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Stampanoni Bassi M, Sancesario A, Morace R, Centonze D, Iezzi E. Cannabinoids in Parkinson’s disease. Cannabis Cannabinoid Res. 2017;2(1):21–9.  https://doi.org/10.1089/can.2017.0002.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Basavarajappa BS, Shivakumar M, Joshi V, Subbanna S. Endocannabinoid system in neurodegenerative disorders. J Neurochem. 2017;142(5):624–48.  https://doi.org/10.1111/jnc.14098.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Hurley MJ, Mash DC, Jenner P. Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain. J Neural Transm (Vienna). 2003;110(11):1279–88.  https://doi.org/10.1007/s00702-003-0033-7.CrossRefPubMedGoogle Scholar
  93. 93.
    Pisani A, Fezza F, Galati S, Battista N, Napolitano S, Finazzi-Agro A, et al. High endogenous cannabinoid levels in the cerebrospinal fluid of untreated Parkinson’s disease patients. Ann Neurol. 2005;57(5):777–9.  https://doi.org/10.1002/ana.20462.CrossRefPubMedGoogle Scholar
  94. 94.
    Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, et al. Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci. 2002;22(16):6900–7.CrossRefPubMedGoogle Scholar
  95. 95.
    Fernandez-Suarez D, Celorrio M, Riezu-Boj JI, Ugarte A, Pacheco R, Gonzalez H, et al. Monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiol Aging. 2014;35(11):2603–16.  https://doi.org/10.1016/j.neurobiolaging.2014.05.021.CrossRefPubMedGoogle Scholar
  96. 96.
    Celorrio M, Fernandez-Suarez D, Rojo-Bustamante E, Echeverry-Alzate V, Ramirez MJ, Hillard CJ, et al. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson’s disease. Brain Behav Immun. 2016;57:94–105.  https://doi.org/10.1016/j.bbi.2016.06.010.CrossRefPubMedGoogle Scholar
  97. 97.
    Viveros-Paredes JM, Gonzalez-Castaneda RE, Escalante-Castaneda A, Tejeda-Martinez AR, Castaneda-Achutigui F, Flores-Soto ME. Effect of inhibition of fatty acid amide hydrolase on MPTP-induced dopaminergic neuronal damage. Neurologia. 2017.  https://doi.org/10.1016/j.nrl.2016.11.008 (Epub ahead of print).CrossRefPubMedGoogle Scholar
  98. 98.
    El-Banoua F, Caraballo I, Flores JA, Galan-Rodriguez B, Fernandez-Espejo E. Effects on turning of microinjections into basal ganglia of D(1) and D(2) dopamine receptors agonists and the cannabinoid CB(1) antagonist SR141716A in a rat Parkinson’s model. Neurobiol Dis. 2004;16(2):377–85.  https://doi.org/10.1016/j.nbd.2004.03.002.CrossRefPubMedGoogle Scholar
  99. 99.
    González S, Scorticati C, Garcia-Arencibia M, de Miguel R, Ramos JA, Fernandez-Ruiz J. Effects of rimonabant, a selective cannabinoid CB1 receptor antagonist, in a rat model of Parkinson’s disease. Brain Res. 2006;1073–1074:209–19.  https://doi.org/10.1016/j.brainres.2005.12.014.CrossRefPubMedGoogle Scholar
  100. 100.
    Kelsey JE, Harris O, Cassin J. The CB(1) antagonist rimonabant is adjunctively therapeutic as well as monotherapeutic in an animal model of Parkinson’s disease. Behav Brain Res. 2009;203(2):304–7.  https://doi.org/10.1016/j.bbr.2009.04.035.CrossRefGoogle Scholar
  101. 101.
    Garcia C, Palomo-Garo C, Garcia-Arencibia M, Ramos J, Pertwee R, Fernandez-Ruiz J. Symptom-relieving and neuroprotective effects of the phytocannabinoid delta(9)-THCV in animal models of Parkinson’s disease. Br J Pharmacol. 2011;163(7):1495–506.  https://doi.org/10.1111/j.1476-5381.2011.01278.x.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Meschler JP, Howlett AC, Madras BK. Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology (Berl). 2001;156(1):79–85.CrossRefGoogle Scholar
  103. 103.
    Mesnage V, Houeto JL, Bonnet AM, Clavier I, Arnulf I, Cattelin F, et al. Neurokinin B, neurotensin, and cannabinoid receptor antagonists and Parkinson disease. Clin Neuropharmacol. 2004;27(3):108–10.CrossRefGoogle Scholar
  104. 104.
    Carroll CB, Bain PG, Teare L, Liu X, Joint C, Wroath C, et al. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology. 2004;63(7):1245–50.CrossRefGoogle Scholar
  105. 105.
    Chagas MH, Zuardi AW, Tumas V, Pena-Pereira MA, Sobreira ET, Bergamaschi MM, et al. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: an exploratory double-blind trial. J Psychopharmacol. 2014;28(11):1088–98.  https://doi.org/10.1177/0269881114550355.CrossRefGoogle Scholar
  106. 106.
    Zuardi AW, Crippa JA, Hallak JE, Pinto JP, Chagas MH, Rodrigues GG, et al. Cannabidiol for the treatment of psychosis in Parkinson’s disease. J Psychopharmacol. 2009;23(8):979–83.  https://doi.org/10.1177/0269881108096519.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Chagas MH, Eckeli AL, Zuardi AW, Pena-Pereira MA, Sobreira-Neto MA, Sobreira ET, et al. Cannabidiol can improve complex sleep-related behaviours associated with rapid eye movement sleep behaviour disorder in Parkinson’s disease patients: a case series. J Clin Pharm Ther. 2014;39(5):564–6.  https://doi.org/10.1111/jcpt.12179.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci. 2003;23(35):11136–41.CrossRefGoogle Scholar
  109. 109.
    Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci. 2005;25(8):1904–13.  https://doi.org/10.1523/jneurosci.4540-04.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Solas M, Francis PT, Franco R, Ramirez MJ. CB2 receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients. Neurobiol Aging. 2013;34(3):805–8.  https://doi.org/10.1016/j.neurobiolaging.2012.06.005.CrossRefGoogle Scholar
  111. 111.
    Koppel J, Vingtdeux V, Marambaud P, d’Abramo C, Jimenez H, Stauber M, et al. CB2 receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer’s disease. Mol Med. 2014;20:29–36.  https://doi.org/10.2119/molmed.2013.00140.revised.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Tolon RM, Nunez E, Pazos MR, Benito C, Castillo AI, Martinez-Orgado JA, et al. The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages. Brain Res. 2009;1283:148–54.  https://doi.org/10.1016/j.brainres.2009.05.098.CrossRefGoogle Scholar
  113. 113.
    Martin-Moreno AM, Brera B, Spuch C, Carro E, Garcia-Garcia L, Delgado M, et al. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J Neuroinflamm. 2012;9:8.  https://doi.org/10.1186/1742-2094-9-8.CrossRefGoogle Scholar
  114. 114.
    Fakhfouri G, Ahmadiani A, Rahimian R, Grolla AA, Moradi F, Haeri A. WIN55212-2 attenuates amyloid-beta-induced neuroinflammation in rats through activation of cannabinoid receptors and PPAR-gamma pathway. Neuropharmacology. 2012;63(4):653–66.  https://doi.org/10.1016/j.neuropharm.2012.05.013.CrossRefGoogle Scholar
  115. 115.
    Wu J, Bie B, Yang H, Xu JJ, Brown DL, Naguib M. Activation of the CB2 receptor system reverses amyloid-induced memory deficiency. Neurobiol Aging. 2013;34(3):791–804.  https://doi.org/10.1016/j.neurobiolaging.2012.06.011.CrossRefGoogle Scholar
  116. 116.
    Aso E, Juves S, Maldonado R, Ferrer I. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AbetaPP/PS1 mice. J Alzheimers Dis. 2013;35(4):847–58.  https://doi.org/10.3233/jad-130137.CrossRefGoogle Scholar
  117. 117.
    Esposito G, Scuderi C, Savani C, Steardo L Jr, De Filippis D, Cottone P, et al. Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br J Pharmacol. 2007;151(8):1272–9.  https://doi.org/10.1038/sj.bjp.0707337.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Cheng D, Low JK, Logge W, Garner B, Karl T. Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1E9 mice. Psychopharmacology (Berl). 2014;231(15):3009–17.  https://doi.org/10.1007/s00213-014-3478-5.CrossRefGoogle Scholar
  119. 119.
    Cheng D, Spiro AS, Jenner AM, Garner B, Karl T. Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer’s disease transgenic mice. J Alzheimers Dis. 2014;42(4):1383–96.  https://doi.org/10.3233/jad-140921.CrossRefGoogle Scholar
  120. 120.
    Aso E, Sanchez-Pla A, Vegas-Lozano E, Maldonado R, Ferrer I. Cannabis-based medicine reduces multiple pathological processes in AbetaPP/PS1 mice. J Alzheimers Dis. 2015;43(3):977–91.  https://doi.org/10.3233/jad-141014.CrossRefGoogle Scholar
  121. 121.
    Glass M, Faull RL, Dragunow M. Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience. 1993;56(3):523–7.CrossRefGoogle Scholar
  122. 122.
    Richfield EK, Herkenham M. Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus. Ann Neurol. 1994;36(4):577–84.  https://doi.org/10.1002/ana.410360406.CrossRefGoogle Scholar
  123. 123.
    Denovan-Wright EM, Robertson HA. Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience. 2000;98(4):705–13.CrossRefGoogle Scholar
  124. 124.
    McCaw EA, Hu H, Gomez GT, Hebb AL, Kelly ME, Denovan-Wright EM. Structure, expression and regulation of the cannabinoid receptor gene (CB1) in Huntington’s disease transgenic mice. Eur J Biochem. 2004;271(23–24):4909–20.  https://doi.org/10.1111/j.1432-1033.2004.04460.x.CrossRefGoogle Scholar
  125. 125.
    Dowie MJ, Bradshaw HB, Howard ML, Nicholson LF, Faull RL, Hannan AJ, et al. Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington’s disease. Neuroscience. 2009;163(1):456–65.  https://doi.org/10.1016/j.neuroscience.2009.06.014.CrossRefGoogle Scholar
  126. 126.
    Blazquez C, Chiarlone A, Sagredo O, Aguado T, Pazos MR, Resel E, et al. Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease. Brain. 2011;134(Pt 1):119–36.  https://doi.org/10.1093/brain/awq278.CrossRefGoogle Scholar
  127. 127.
    Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain. 2009;132(Pt 11):3152–64.  https://doi.org/10.1093/brain/awp239.CrossRefGoogle Scholar
  128. 128.
    Bisogno T, Martire A, Petrosino S, Popoli P, Di Marzo V. Symptom-related changes of endocannabinoid and palmitoylethanolamide levels in brain areas of R6/2 mice, a transgenic model of Huntington’s disease. Neurochem Int. 2008;52(1–2):307–13.  https://doi.org/10.1016/j.neuint.2007.06.031.CrossRefGoogle Scholar
  129. 129.
    Bari M, Battista N, Valenza M, Mastrangelo N, Malaponti M, Catanzaro G, et al. In vitro and in vivo models of Huntington’s disease show alterations in the endocannabinoid system. FEBS J. 2013;280(14):3376–88.  https://doi.org/10.1111/febs.12329.CrossRefGoogle Scholar
  130. 130.
    Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Brouillet E, Fernandez-Ruiz J. Effects of cannabinoids in the rat model of Huntington’s disease generated by an intrastriatal injection of malonate. Neuroreport. 2003;14(6):813–6.  https://doi.org/10.1097/01.wnr.0000067781.69995.1b.CrossRefGoogle Scholar
  131. 131.
    Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Fernandez-Ruiz J, Brouillet E. Potential involvement of cannabinoid receptors in 3-nitropropionic acid toxicity in vivo. Neuroreport. 2004;15(15):2375–9.CrossRefGoogle Scholar
  132. 132.
    Sagredo O, Ramos JA, Decio A, Mechoulam R, Fernandez-Ruiz J. Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors. Eur J Neurosci. 2007;26(4):843–51.  https://doi.org/10.1111/j.1460-9568.2007.05717.x.CrossRefGoogle Scholar
  133. 133.
    Maya-Lopez M, Colin-Gonzalez AL, Aguilera G, de Lima ME, Colpo-Ceolin A, Rangel-Lopez E, et al. Neuroprotective effect of WIN55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1 and NMDA receptors. Am J Transl Res. 2017;9(2):261–74.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Consroe P, Laguna J, Allender J, Snider S, Stern L, Sandyk R, et al. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol Biochem Behav. 1991;40(3):701–8.CrossRefGoogle Scholar
  135. 135.
    Lopez-Sendon Moreno JL, Garcia Caldentey J, Trigo Cubillo P, Ruiz Romero C, Garcia Ribas G, Alonso Arias MA, et al. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J Neurol. 2016;263(7):1390–400.  https://doi.org/10.1007/s00415-016-8145-9.CrossRefGoogle Scholar
  136. 136.
    Curtis A, Mitchell I, Patel S, Ives N, Rickards H. A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord. 2009;24(15):2254–9.  https://doi.org/10.1002/mds.22809.CrossRefGoogle Scholar
  137. 137.
    Sallan SE, Zinberg NE, Frei E 3rd. Antiemetic effect of delta-9-tetrahydrocannabinol in patients receiving cancer chemotherapy. N Engl J Med. 1975;293(16):795–7.  https://doi.org/10.1056/nejm197510162931603.CrossRefGoogle Scholar
  138. 138.
    Darmani NA. Delta(9)-tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid CB(1) receptor antagonist/inverse agonist SR 141716A. Neuropsychopharmacology. 2001;24(2):198–203.  https://doi.org/10.1016/s0893-133x(00)00197-4.CrossRefGoogle Scholar
  139. 139.
    Darmani NA, Sim-Selley LJ, Martin BR, Janoyan JJ, Crim JL, Parekh B, et al. Antiemetic and motor-depressive actions of CP55,940: cannabinoid CB1 receptor characterization, distribution, and G-protein activation. Eur J Pharmacol. 2003;459(1):83–95.CrossRefGoogle Scholar
  140. 140.
    Darmani NA. Delta-9-tetrahydrocannabinol differentially suppresses cisplatin-induced emesis and indices of motor function via cannabinoid CB(1) receptors in the least shrew. Pharmacol Biochem Behav. 2001;69(1–2):239–49.CrossRefGoogle Scholar
  141. 141.
    Van Sickle MD, Oland LD, Mackie K, Davison JS, Sharkey KA. Delta9-tetrahydrocannabinol selectively acts on CB1 receptors in specific regions of dorsal vagal complex to inhibit emesis in ferrets. Am J Physiol Gastrointest Liver Physiol. 2003;285(3):G566–76.  https://doi.org/10.1152/ajpgi.00113.2003.CrossRefGoogle Scholar
  142. 142.
    Rock EM, Boulet N, Limebeer CL, Mechoulam R, Parker LA. Cannabinoid 2 (CB2) receptor agonism reduces lithium chloride-induced vomiting in Suncus murinus and nausea-induced conditioned gaping in rats. Eur J Pharmacol. 2016;786:94–9.  https://doi.org/10.1016/j.ejphar.2016.06.001.CrossRefGoogle Scholar
  143. 143.
    Kwiatkowska M, Parker LA, Burton P, Mechoulam R. A comparative analysis of the potential of cannabinoids and ondansetron to suppress cisplatin-induced emesis in the Suncus murinus (house musk shrew). Psychopharmacology (Berl). 2004;174(2):254–9.  https://doi.org/10.1007/s00213-003-1739-9.CrossRefGoogle Scholar
  144. 144.
    Parker LA, Kwiatkowska M, Burton P, Mechoulam R. Effect of cannabinoids on lithium-induced vomiting in the Suncus murinus (house musk shrew). Psychopharmacology (Berl). 2004;171(2):156–61.  https://doi.org/10.1007/s00213-003-1571-2.CrossRefGoogle Scholar
  145. 145.
    Sharkey KA, Cristino L, Oland LD, Van Sickle MD, Starowicz K, Pittman QJ, et al. Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret. Eur J Neurosci. 2007;25(9):2773–82.  https://doi.org/10.1111/j.1460-9568.2007.05521.x.CrossRefGoogle Scholar
  146. 146.
    Sticht MA, Rock EM, Parker LA. 2-arachidonoylglycerol interferes with lithium-induced vomiting in the house musk shrew, Suncus murinus. Physiol Behav. 2013;120:228–32.  https://doi.org/10.1016/j.physbeh.2013.08.015.CrossRefGoogle Scholar
  147. 147.
    Parker LA, Limebeer CL, Rock EM, Litt DL, Kwiatkowska M, Piomelli D. The FAAH inhibitor URB-597 interferes with cisplatin- and nicotine-induced vomiting in the Suncus murinus (house musk shrew). Physiol Behav. 2009;97(1):121–4.  https://doi.org/10.1016/j.physbeh.2009.02.014.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Parker LA, Niphakis MJ, Downey R, Limebeer CL, Rock EM, Sticht MA, et al. Effect of selective inhibition of monoacylglycerol lipase (MAGL) on acute nausea, anticipatory nausea, and vomiting in rats and Suncus murinus. Psychopharmacology (Berl). 2015;232(3):583–93.  https://doi.org/10.1007/s00213-014-3696-x.CrossRefGoogle Scholar
  149. 149.
    Pomeroy M, Fennelly JJ, Towers M. Prospective randomized double-blind trial of nabilone versus domperidone in the treatment of cytotoxic-induced emesis. Cancer Chemother Pharmacol. 1986;17(3):285–8.CrossRefGoogle Scholar
  150. 150.
    Meiri E, Jhangiani H, Vredenburgh JJ, Barbato LM, Carter FJ, Yang HM, et al. Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting. Curr Med Res Opin. 2007;23(3):533–43.  https://doi.org/10.1185/030079907x167525.CrossRefGoogle Scholar
  151. 151.
    Lane M, Vogel CL, Ferguson J, Krasnow S, Saiers JL, Hamm J, et al. Dronabinol and prochlorperazine in combination for treatment of cancer chemotherapy-induced nausea and vomiting. J Pain Sympt Manag. 1991;6(6):352–9.CrossRefGoogle Scholar
  152. 152.
    Abrahamov A, Abrahamov A, Mechoulam R. An efficient new cannabinoid antiemetic in pediatric oncology. Life Sci. 1995;56(23–24):2097–102.CrossRefGoogle Scholar
  153. 153.
    Elder JJ, Knoderer HM. Characterization of dronabinol usage in a pediatric oncology population. J Pediatr Pharmacol Ther. 2015;20(6):462–7.  https://doi.org/10.5863/1551-6776-20.6.462.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Polito S, MacDonald T, Romanick M, Jupp J, Wiernikowski J, Vennettilli A, et al. Safety and efficacy of nabilone for acute chemotherapy-induced vomiting prophylaxis in pediatric patients: a multicenter, retrospective review. Pediatr Blood Cancer. 2018;26:e2737.  https://doi.org/10.1002/pbc.27374 (Epub ahead of print).CrossRefGoogle Scholar
  155. 155.
    Kleine-Brueggeney M, Greif R, Brenneisen R, Urwyler N, Stueber F, Theiler LG. Intravenous delta-9-tetrahydrocannabinol to prevent postoperative nausea and vomiting: a randomized controlled trial. Anesth Analg. 2015;121(5):1157–64.  https://doi.org/10.1213/ane.0000000000000877.CrossRefGoogle Scholar
  156. 156.
    Calignano A, La Rana G, Giuffrida A, Piomelli D. Control of pain initiation by endogenous cannabinoids. Nature. 1998;394(6690):277–81.  https://doi.org/10.1038/28393.CrossRefGoogle Scholar
  157. 157.
    Guindon J, Desroches J, Beaulieu P. The antinociceptive effects of intraplantar injections of 2-arachidonoyl glycerol are mediated by cannabinoid CB2 receptors. Br J Pharmacol. 2007;150(6):693–701.  https://doi.org/10.1038/sj.bjp.0706990.CrossRefGoogle Scholar
  158. 158.
    Starowicz K, Makuch W, Osikowicz M, Piscitelli F, Petrosino S, Di Marzo V, et al. Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms. Neuropharmacology. 2012;62(4):1746–55.  https://doi.org/10.1016/j.neuropharm.2011.11.021.CrossRefGoogle Scholar
  159. 159.
    Lichtman AH, Leung D, Shelton CC, Saghatelian A, Hardouin C, Boger DL, et al. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J Pharmacol Exp Ther. 2004;311(2):441–8.  https://doi.org/10.1124/jpet.104.069401.CrossRefGoogle Scholar
  160. 160.
    Jayamanne A, Greenwood R, Mitchell VA, Aslan S, Piomelli D, Vaughan CW. Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models. Br J Pharmacol. 2006;147(3):281–8.  https://doi.org/10.1038/sj.bjp.0706510.CrossRefGoogle Scholar
  161. 161.
    Sagar DR, Kendall DA, Chapman V. Inhibition of fatty acid amide hydrolase produces PPAR-alpha-mediated analgesia in a rat model of inflammatory pain. Br J Pharmacol. 2008;155(8):1297–306.  https://doi.org/10.1038/bjp.2008.335.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Jhaveri MD, Richardson D, Robinson I, Garle MJ, Patel A, Sun Y, et al. Inhibition of fatty acid amide hydrolase and cyclooxygenase-2 increases levels of endocannabinoid related molecules and produces analgesia via peroxisome proliferator-activated receptor-alpha in a model of inflammatory pain. Neuropharmacology. 2008;55(1):85–93.  https://doi.org/10.1016/j.neuropharm.2008.04.018.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Spradley JM, Guindon J, Hohmann AG. Inhibitors of monoacylglycerol lipase, fatty-acid amide hydrolase and endocannabinoid transport differentially suppress capsaicin-induced behavioral sensitization through peripheral endocannabinoid mechanisms. Pharmacol Res. 2010;62(3):249–58.  https://doi.org/10.1016/j.phrs.2010.03.007.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Guindon J, Guijarro A, Piomelli D, Hohmann AG. Peripheral antinociceptive effects of inhibitors of monoacylglycerol lipase in a rat model of inflammatory pain. Br J Pharmacol. 2011;163(7):1464–78.  https://doi.org/10.1111/j.1476-5381.2010.01192.x.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Chang L, Luo L, Palmer JA, Sutton S, Wilson SJ, Barbier AJ, et al. Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms. Br J Pharmacol. 2006;148(1):102–13.  https://doi.org/10.1038/sj.bjp.0706699.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Jhaveri MD, Richardson D, Kendall DA, Barrett DA, Chapman V. Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain. J Neurosci. 2006;26(51):13318–27.  https://doi.org/10.1523/jneurosci.3326-06.2006.CrossRefGoogle Scholar
  167. 167.
    Woodhams SG, Wong A, Barrett DA, Bennett AJ, Chapman V, Alexander SP. Spinal administration of the monoacylglycerol lipase inhibitor JZL184 produces robust inhibitory effects on nociceptive processing and the development of central sensitization in the rat. Br J Pharmacol. 2012;167(8):1609–19.  https://doi.org/10.1111/j.1476-5381.2012.02179.x.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Clapper JR, Moreno-Sanz G, Russo R, Guijarro A, Vacondio F, Duranti A, et al. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci. 2010;13(10):1265–70.  https://doi.org/10.1038/nn.2632.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Maurer M, Henn V, Dittrich A, Hofmann A. Delta-9-tetrahydrocannabinol shows antispastic and analgesic effects in a single case double-blind trial. Eur Arch Psychiatry Clin Neurosci. 1990;240(1):1–4.CrossRefGoogle Scholar
  170. 170.
    Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ. 2004;329(7460):253.  https://doi.org/10.1136/bmj.38149.566979.AE.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Wissel J, Haydn T, Muller J, Brenneis C, Berger T, Poewe W, et al. Low dose treatment with the synthetic cannabinoid Nabilone significantly reduces spasticity-related pain : a double-blind placebo-controlled cross-over trial. J Neurol. 2006;253(10):1337–41.  https://doi.org/10.1007/s00415-006-0218-8.CrossRefGoogle Scholar
  172. 172.
    Toth C, Mawani S, Brady S, Chan C, Liu C, Mehina E, et al. An enriched-enrolment, randomized withdrawal, flexible-dose, double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of diabetic peripheral neuropathic pain. Pain. 2012;153(10):2073–82.  https://doi.org/10.1016/j.pain.2012.06.024.CrossRefGoogle Scholar
  173. 173.
    Nurmikko TJ, Serpell MG, Hoggart B, Toomey PJ, Morlion BJ, Haines D. Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial. Pain. 2007;133(1–3):210–20.  https://doi.org/10.1016/j.pain.2007.08.028.CrossRefGoogle Scholar
  174. 174.
    Wade DT, Robson P, House H, Makela P, Aram J. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin Rehabil. 2003;17(1):21–9.  https://doi.org/10.1191/0269215503cr581oa.CrossRefGoogle Scholar
  175. 175.
    Blake DR, Robson P, Ho M, Jubb RW, McCabe CS. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology (Oxford). 2006;45(1):50–2.  https://doi.org/10.1093/rheumatology/kei183.CrossRefPubMedGoogle Scholar
  176. 176.
    Serpell MG, Notcutt W, Collin C. Sativex long-term use: an open-label trial in patients with spasticity due to multiple sclerosis. J Neurol. 2013;260(1):285–95.  https://doi.org/10.1007/s00415-012-6634-z.CrossRefPubMedGoogle Scholar
  177. 177.
    Serpell M, Ratcliffe S, Hovorka J, Schofield M, Taylor L, Lauder H, et al. A double-blind, randomized, placebo-controlled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment. Eur J Pain. 2014;18(7):999–1012.  https://doi.org/10.1002/j.1532-2149.2013.00445.x.CrossRefPubMedGoogle Scholar
  178. 178.
    Crowley K, de Vries ST, Moreno-Sanz G. Self-reported effectiveness and safety of Trokie® lozenges: a standardized formulation for the buccal delivery of cannabis extracts. Front Neurosci. 2018;12:564.  https://doi.org/10.3389/fnins.2018.00564.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Karst M, Salim K, Burstein S, Conrad I, Hoy L, Schneider U. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA. 2003;290(13):1757–62.  https://doi.org/10.1001/jama.290.13.1757.CrossRefPubMedGoogle Scholar
  180. 180.
    Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S, et al. Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology. 2007;68(7):515–21.  https://doi.org/10.1212/01.wnl.0000253187.66183.9c.CrossRefPubMedGoogle Scholar
  181. 181.
    Ellis RJ, Toperoff W, Vaida F, van den Brande G, Gonzales J, Gouaux B, et al. Smoked medicinal cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. Neuropsychopharmacology. 2009;34(3):672–80.  https://doi.org/10.1038/npp.2008.120.CrossRefPubMedGoogle Scholar
  182. 182.
    Wilsey B, Marcotte T, Tsodikov A, Millman J, Bentley H, Gouaux B, et al. A randomized, placebo-controlled, crossover trial of cannabis cigarettes in neuropathic pain. J Pain. 2008;9(6):506–21.  https://doi.org/10.1016/j.jpain.2007.12.010.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Wilsey B, Marcotte T, Deutsch R, Gouaux B, Sakai S, Donaghe H. Low-dose vaporized cannabis significantly improves neuropathic pain. J Pain. 2013;14(2):136–48.  https://doi.org/10.1016/j.jpain.2012.10.009.CrossRefPubMedGoogle Scholar
  184. 184.
    Ware MA, Wang T, Shapiro S, Robinson A, Ducruet T, Huynh T, et al. Smoked cannabis for chronic neuropathic pain: a randomized controlled trial. CMAJ. 2010;182(14):E694–701.  https://doi.org/10.1503/cmaj.091414.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Wallace MS, Marcotte TD, Umlauf A, Gouaux B, Atkinson JH. Efficacy of inhaled cannabis on painful diabetic neuropathy. J Pain. 2015;16(7):616–27.  https://doi.org/10.1016/j.jpain.2015.03.008.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Johnson JR, Burnell-Nugent M, Lossignol D, Ganae-Motan ED, Potts R, Fallon MT. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J Pain Sympt Manag. 2010;39(2):167–79.  https://doi.org/10.1016/j.jpainsymman.2009.06.008.CrossRefGoogle Scholar
  187. 187.
    Lynch ME, Cesar-Rittenberg P, Hohmann AG. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J Pain Sympt Manag. 2014;47(1):166–73.  https://doi.org/10.1016/j.jpainsymman.2013.02.018.CrossRefGoogle Scholar
  188. 188.
    Abrams DI, Couey P, Shade SB, Kelly ME, Benowitz NL. Cannabinoid–opioid interaction in chronic pain. Clin Pharmacol Ther. 2011;90(6):844–51.  https://doi.org/10.1038/clpt.2011.188.CrossRefPubMedGoogle Scholar
  189. 189.
    Narang S, Gibson D, Wasan AD, Ross EL, Michna E, Nedeljkovic SS, et al. Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J Pain. 2008;9(3):254–64.  https://doi.org/10.1016/j.jpain.2007.10.018.CrossRefPubMedGoogle Scholar
  190. 190.
    Turcotte D, Doupe M, Torabi M, Gomori A, Ethans K, Esfahani F, et al. Nabilone as an adjunctive to gabapentin for multiple sclerosis-induced neuropathic pain: a randomized controlled trial. Pain Med. 2015;16(1):149–59.  https://doi.org/10.1111/pme.12569.CrossRefPubMedGoogle Scholar
  191. 191.
    Huggins JP, Smart TS, Langman S, Taylor L, Young T. An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain. 2012;153(9):1837–46.  https://doi.org/10.1016/j.pain.2012.04.020.CrossRefPubMedGoogle Scholar
  192. 192.
    Zhang L, Li XX, Hu XZ. Post-traumatic stress disorder risk and brain-derived neurotrophic factor Val66Met. World J Psychiatry. 2016;6(1):1–6.  https://doi.org/10.5498/wjp.v6.i1.1.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Burstein O, Shoshan N, Doron R, Akirav I. Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84(Pt A):129–39.  https://doi.org/10.1016/j.pnpbp.2018.01.026.CrossRefPubMedGoogle Scholar
  194. 194.
    Ghasemi M, Abrari K, Goudarzi I, Rashidy-Pour A. Effect of WIN55-212-2 and consequences of extinction training on conditioned fear memory in PTSD male rats. Basic Clin Neurosci. 2017;8(6):493–502.  https://doi.org/10.29252/nirp.bcn.8.6.493.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Fidelman S, Mizrachi Zer-Aviv T, Lange R, Hillard CJ, Akirav I. Chronic treatment with URB597 ameliorates post-stress symptoms in a rat model of PTSD. Eur Neuropsychopharmacol. 2018;28(5):630–42.  https://doi.org/10.1016/j.euroneuro.2018.02.004.CrossRefPubMedGoogle Scholar
  196. 196.
    Stern CA, Gazarini L, Vanvossen AC, Zuardi AW, Galve-Roperh I, Guimaraes FS, et al. Delta9-tetrahydrocannabinol alone and combined with cannabidiol mitigate fear memory through reconsolidation disruption. Eur Neuropsychopharmacol. 2015;25(6):958–65.  https://doi.org/10.1016/j.euroneuro.2015.02.001.CrossRefPubMedGoogle Scholar
  197. 197.
    Mizrachi Zer-Aviv T, Segev A, Akirav I. Cannabinoids and post-traumatic stress disorder: clinical and preclinical evidence for treatment and prevention. Behav Pharmacol. 2016;27(7):561–9.  https://doi.org/10.1097/fbp.0000000000000253.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Hill MN, Campolongo P, Yehuda R, Patel S. Integrating endocannabinoid signaling and cannabinoids into the biology and treatment of posttraumatic stress disorder. Neuropsychopharmacology. 2018;43(1):80–102.  https://doi.org/10.1038/npp.2017.162.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Fraser GA. The use of a synthetic cannabinoid in the management of treatment-resistant nightmares in posttraumatic stress disorder (PTSD). CNS Neurosci Ther. 2009;15(1):84–8.  https://doi.org/10.1111/j.1755-5949.2008.00071.x.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Jetly R, Heber A, Fraser G, Boisvert D. The efficacy of nabilone, a synthetic cannabinoid, in the treatment of PTSD-associated nightmares: a preliminary randomized, double-blind, placebo-controlled cross-over design study. Psychoneuroendocrinology. 2015;51:585–8.  https://doi.org/10.1016/j.psyneuen.2014.11.002.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Sandyk R, Awerbuch G. Marijuana and Tourette’s syndrome. J Clin Psychopharmacol. 1988;8(6):444–5.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Hemming M, Yellowlees PM. Effective treatment of Tourette’s syndrome with marijuana. J Pychopharmacol (Oxford, England). 1993;7(4):389–91.  https://doi.org/10.1177/026988119300700411.CrossRefGoogle Scholar
  203. 203.
    Hasan A, Rothenberger A, Munchau A, Wobrock T, Falkai P, Roessner V. Oral delta 9-tetrahydrocannabinol improved refractory Gilles de la Tourette syndrome in an adolescent by increasing intracortical inhibition: a case report. J Clin Psychopharmacol. 2010;30(2):190–2.  https://doi.org/10.1097/JCP.0b013e3181d236ec.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Muller-Vahl KR, Schneider U, Koblenz A, Jobges M, Kolbe H, Daldrup T, et al. Treatment of Tourette’s syndrome with delta 9-tetrahydrocannabinol (THC): a randomized crossover trial. Pharmacopsychiatry. 2002;35(2):57–61.  https://doi.org/10.1055/s-2002-25028.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Trainor D, Evans L, Bird R. Severe motor and vocal tics controlled with Sativex®. Australas Psychiatry. 2016;24(6):541–4.  https://doi.org/10.1177/1039856216663737.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Zuardi AW, Cosme RA, Graeff FG, Guimaraes FS. Effects of ipsapirone and cannabidiol on human experimental anxiety. J Psychopharmacol. 1993;7(1 Suppl.):82–8.  https://doi.org/10.1177/026988119300700112.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Bergamaschi MM, Queiroz RH, Chagas MH, de Oliveira DC, De Martinis BS, Kapczinski F, et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients. Neuropsychopharmacology. 2011;36(6):1219–26.  https://doi.org/10.1038/npp.2011.6.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Crippa JA, Derenusson GN, Ferrari TB, Wichert-Ana L, Duran FL, Martin-Santos R, et al. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. J Psychopharmacol. 2011;25(1):121–30.  https://doi.org/10.1177/0269881110379283.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Fusar-Poli P, Crippa JA, Bhattacharyya S, Borgwardt SJ, Allen P, Martin-Santos R, et al. Distinct effects of {delta}9-tetrahydrocannabinol and cannabidiol on neural activation during emotional processing. Arch Gen Psychiatry. 2009;66(1):95–105.  https://doi.org/10.1001/archgenpsychiatry.2008.519.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Fraguas-Sanchez AI, Martin-Sabroso C, Torres-Suarez AI. Insights into the effects of the endocannabinoid system in cancer: a review. Br J Pharmacol. 2018;175(13):2566–80.  https://doi.org/10.1111/bph.14331.CrossRefGoogle Scholar
  211. 211.
    Guzman M. Cannabinoids: potential anticancer agents. Nat Rev Cancer. 2003;3(10):745–55.  https://doi.org/10.1038/nrc1188.CrossRefGoogle Scholar
  212. 212.
    Wu X, Han L, Zhang X, Li L, Jiang C, Qiu Y, et al. Alteration of endocannabinoid system in human gliomas. J Neurochem. 2012;120(5):842–9.  https://doi.org/10.1111/j.1471-4159.2011.07625.x.CrossRefGoogle Scholar
  213. 213.
    Sredni ST, Huang CC, Suzuki M, Pundy T, Chou P, Tomita T. Spontaneous involution of pediatric low-grade gliomas: high expression of cannabinoid receptor 1 (CNR1) at the time of diagnosis may indicate involvement of the endocannabinoid system. Childs Nerv Syst. 2016;32(11):2061–7.  https://doi.org/10.1007/s00381-016-3243-7.CrossRefGoogle Scholar
  214. 214.
    Sanchez C, de Ceballos ML, Gomez del Pulgar T, Rueda D, Corbacho C, Velasco G, et al. Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res. 2001;61(15):5784–9.Google Scholar
  215. 215.
    Ellert-Miklaszewska A, Grajkowska W, Gabrusiewicz K, Kaminska B, Konarska L. Distinctive pattern of cannabinoid receptor type II (CB2) expression in adult and pediatric brain tumors. Brain Res. 2007;1137(1):161–9.  https://doi.org/10.1016/j.brainres.2006.12.060.CrossRefGoogle Scholar
  216. 216.
    Schley M, Stander S, Kerner J, Vajkoczy P, Schupfer G, Dusch M, et al. Predominant CB2 receptor expression in endothelial cells of glioblastoma in humans. Brain Res Bull. 2009;79(5):333–7.  https://doi.org/10.1016/j.brainresbull.2009.01.011.CrossRefGoogle Scholar
  217. 217.
    Maccarrone M, Attina M, Cartoni A, Bari M, Finazzi-Agro A. Gas chromatography–mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture. J Neurochem. 2001;76(2):594–601.CrossRefGoogle Scholar
  218. 218.
    Petersen G, Moesgaard B, Schmid PC, Schmid HH, Broholm H, Kosteljanetz M, et al. Endocannabinoid metabolism in human glioblastomas and meningiomas compared to human non-tumour brain tissue. J Neurochem. 2005;93(2):299–309.  https://doi.org/10.1111/j.1471-4159.2005.03013.x.CrossRefGoogle Scholar
  219. 219.
    Contassot E, Wilmotte R, Tenan M, Belkouch MC, Schnuriger V, de Tribolet N, et al. Arachidonylethanolamide induces apoptosis of human glioma cells through vanilloid receptor-1. J Neuropathol Exp Neurol. 2004;63(9):956–63.CrossRefGoogle Scholar
  220. 220.
    Hinz B, Ramer R, Eichele K, Weinzierl U, Brune K. Up-regulation of cyclooxygenase-2 expression is involved in R(+)-methanandamide-induced apoptotic death of human neuroglioma cells. Mol Pharmacol. 2004;66(6):1643–51.  https://doi.org/10.1124/mol.104.002618.CrossRefGoogle Scholar
  221. 221.
    Bari M, Battista N, Fezza F, Finazzi-Agro A, Maccarrone M. Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. J Biol Chem. 2005;280(13):12212–20.  https://doi.org/10.1074/jbc.M411642200.CrossRefGoogle Scholar
  222. 222.
    Ma C, Wu TT, Jiang PC, Li ZQ, Chen XJ, Fu K, et al. Anti-carcinogenic activity of anandamide on human glioma in vitro and in vivo. Mol Med Rep. 2016;13(2):1558–62.  https://doi.org/10.3892/mmr.2015.4721.CrossRefGoogle Scholar
  223. 223.
    Hohmann T, Grabiec U, Ghadban C, Feese K, Dehghani F. The influence of biomechanical properties and cannabinoids on tumor invasion. Cell Adh Migr. 2017;11(1):54–67.  https://doi.org/10.1080/19336918.2016.1183867.CrossRefGoogle Scholar
  224. 224.
    Fowler CJ, Jonsson KO, Andersson A, Juntunen J, Jarvinen T, Vandevoorde S, et al. Inhibition of C6 glioma cell proliferation by anandamide, 1-arachidonoylglycerol, and by a water soluble phosphate ester of anandamide: variability in response and involvement of arachidonic acid. Biochem Pharmacol. 2003;66(5):757–67.CrossRefGoogle Scholar
  225. 225.
    Jacobsson SO, Wallin T, Fowler CJ. Inhibition of rat C6 glioma cell proliferation by endogenous and synthetic cannabinoids: relative involvement of cannabinoid and vanilloid receptors. J Pharmacol Exp Ther. 2001;299(3):951–9.Google Scholar
  226. 226.
    Massi P, Vaccani A, Ceruti S, Colombo A, Abbracchio MP, Parolaro D. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J Pharmacol Exp Ther. 2004;308(3):838–45.  https://doi.org/10.1124/jpet.103.061002.CrossRefGoogle Scholar
  227. 227.
    Marcu JP, Christian RT, Lau D, Zielinski AJ, Horowitz MP, Lee J, et al. Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol Cancer Ther. 2010;9(1):180–9.  https://doi.org/10.1158/1535-7163.mct-09-0407.CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Caffarel MM, Andradas C, Mira E, Perez-Gomez E, Cerutti C, Moreno-Bueno G, et al. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol Cancer. 2010;9:196.  https://doi.org/10.1186/1476-4598-9-196.CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Perez-Gomez E, Andradas C, Blasco-Benito S, Caffarel MM, Garcia-Taboada E, Villa-Morales M, et al. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer. J Natl Cancer Inst. 2015;107(6):dvj077.  https://doi.org/10.1093/jnci/djv077.CrossRefGoogle Scholar
  230. 230.
    Bisogno T, Katayama K, Melck D, Ueda N, De Petrocellis L, Yamamoto S, et al. Biosynthesis and degradation of bioactive fatty acid amides in human breast cancer and rat pheochromocytoma cells: implications for cell proliferation and differentiation. Eur J Biochem. 1998;254(3):634–42.CrossRefGoogle Scholar
  231. 231.
    Melck D, De Petrocellis L, Orlando P, Bisogno T, Laezza C, Bifulco M, et al. Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology. 2000;141(1):118–26.  https://doi.org/10.1210/endo.141.1.7239.CrossRefGoogle Scholar
  232. 232.
    Ligresti A, Moriello AS, Starowicz K, Matias I, Pisanti S, De Petrocellis L, et al. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther. 2006;318(3):1375–87.  https://doi.org/10.1124/jpet.106.105247.CrossRefGoogle Scholar
  233. 233.
    Qamri Z, Preet A, Nasser MW, Bass CE, Leone G, Barsky SH, et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther. 2009;8(11):3117–29.  https://doi.org/10.1158/1535-7163.mct-09-0448.CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Grimaldi C, Pisanti S, Laezza C, Malfitano AM, Santoro A, Vitale M, et al. Anandamide inhibits adhesion and migration of breast cancer cells. Exp Cell Res. 2006;312(4):363–73.  https://doi.org/10.1016/j.yexcr.2005.10.024.CrossRefGoogle Scholar
  235. 235.
    Blasco-Benito S, Seijo-Vila M, Caro-Villalobos M, Tundidor I, Andradas C, Garcia-Taboada E, et al. Appraising the “entourage effect”: antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem Pharmacol. 2018.  https://doi.org/10.1016/j.bcp.2018.06.025 (Epub ahead of print).CrossRefGoogle Scholar
  236. 236.
    Sarfaraz S, Afaq F, Adhami VM, Mukhtar H. Cannabinoid receptor as a novel target for the treatment of prostate cancer. Cancer Res. 2005;65(5):1635–41.  https://doi.org/10.1158/0008-5472.can-04-3410.CrossRefGoogle Scholar
  237. 237.
    Orellana-Serradell O, Poblete CE, Sanchez C, Castellon EA, Gallegos I, Huidobro C, et al. Proapoptotic effect of endocannabinoids in prostate cancer cells. Oncol Rep. 2015;33(4):1599–608.  https://doi.org/10.3892/or.2015.3746.CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Chung SC, Hammarsten P, Josefsson A, Stattin P, Granfors T, Egevad L, et al. A high cannabinoid CB(1) receptor immunoreactivity is associated with disease severity and outcome in prostate cancer. Eur J Cancer. 2009;45(1):174–82.  https://doi.org/10.1016/j.ejca.2008.10.010.CrossRefGoogle Scholar
  239. 239.
    Cipriano M, Haggstrom J, Hammarsten P, Fowler CJ. Association between cannabinoid CB(1) receptor expression and Akt signalling in prostate cancer. PLoS One. 2013;8(6):e65798.  https://doi.org/10.1371/journal.pone.0065798.CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Mimeault M, Pommery N, Wattez N, Bailly C, Henichart JP. Anti-proliferative and apoptotic effects of anandamide in human prostatic cancer cell lines: implication of epidermal growth factor receptor down-regulation and ceramide production. Prostate. 2003;56(1):1–12.  https://doi.org/10.1002/pros.10190.CrossRefGoogle Scholar
  241. 241.
    Nithipatikom K, Isbell MA, Endsley MP, Woodliff JE, Campbell WB. Anti-proliferative effect of a putative endocannabinoid, 2-arachidonylglyceryl ether in prostate carcinoma cells. Prostaglandins Other Lipid Mediat. 2011;94(1–2):34–43.  https://doi.org/10.1016/j.prostaglandins.2010.12.002.CrossRefGoogle Scholar
  242. 242.
    Endsley MP, Aggarwal N, Isbell MA, Wheelock CE, Hammock BD, Falck JR, et al. Diverse roles of 2-arachidonoylglycerol in invasion of prostate carcinoma cells: location, hydrolysis and 12-lipoxygenase metabolism. Int J Cancer. 2007;121(5):984–91.  https://doi.org/10.1002/ijc.22761.CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Nithipatikom K, Endsley MP, Isbell MA, Falck JR, Iwamoto Y, Hillard CJ, et al. 2-arachidonoylglycerol: a novel inhibitor of androgen-independent prostate cancer cell invasion. Cancer Res. 2004;64(24):8826–30.  https://doi.org/10.1158/0008-5472.can-04-3136.CrossRefGoogle Scholar
  244. 244.
    Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, Long JZ, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol. 2011;18(7):846–56.  https://doi.org/10.1016/j.chembiol.2011.05.009.CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Cipriano M, Gouveia-Figueira S, Persson E, Nording M, Fowler CJ. The influence of monoacylglycerol lipase inhibition upon the expression of epidermal growth factor receptor in human PC-3 prostate cancer cells. BMC Res Notes. 2014;7:441.  https://doi.org/10.1186/1756-0500-7-441.CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Ramer R, Bublitz K, Freimuth N, Merkord J, Rohde H, Haustein M, et al. Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1. FASEB J. 2012;26(4):1535–48.  https://doi.org/10.1096/fj.11-198184.CrossRefGoogle Scholar
  247. 247.
    Suk KT, Mederacke I, Gwak GY, Cho SW, Adeyemi A, Friedman R, et al. Opposite roles of cannabinoid receptors 1 and 2 in hepatocarcinogenesis. Gut. 2016;65(10):1721–32.  https://doi.org/10.1136/gutjnl-2015-310212.CrossRefGoogle Scholar
  248. 248.
    Xu X, Liu Y, Huang S, Liu G, Xie C, Zhou J, et al. Overexpression of cannabinoid receptors CB1 and CB2 correlates with improved prognosis of patients with hepatocellular carcinoma. Cancer Genet Cytogenet. 2006;171(1):31–8.  https://doi.org/10.1016/j.cancergencyto.2006.06.014.CrossRefGoogle Scholar
  249. 249.
    DeMorrow S, Glaser S, Francis H, Venter J, Vaculin B, Vaculin S, et al. Opposing actions of endocannabinoids on cholangiocarcinoma growth: recruitment of Fas and Fas ligand to lipid rafts. J Biol Chem. 2007;282(17):13098–113.  https://doi.org/10.1074/jbc.M608238200.CrossRefGoogle Scholar
  250. 250.
    DeMorrow S, Francis H, Gaudio E, Venter J, Franchitto A, Kopriva S, et al. The endocannabinoid anandamide inhibits cholangiocarcinoma growth via activation of the noncanonical Wnt signaling pathway. Am J Physiol Gastrointest Liver Physiol. 2008;295(6):G1150–8.  https://doi.org/10.1152/ajpgi.90455.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Giuliano M, Pellerito O, Portanova P, Calvaruso G, Santulli A, De Blasio A, et al. Apoptosis induced in HepG2 cells by the synthetic cannabinoid WIN: involvement of the transcription factor PPARgamma. Biochimie. 2009;91(4):457–65.  https://doi.org/10.1016/j.biochi.2008.11.003.CrossRefGoogle Scholar
  252. 252.
    Vara D, Salazar M, Olea-Herrero N, Guzman M, Velasco G, Diaz-Laviada I. Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death Differ. 2011;18(7):1099–111.  https://doi.org/10.1038/cdd.2011.32.CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Xu D, Wang J, Zhou Z, He Z, Zhao Q. Cannabinoid WIN55, 212-2 induces cell cycle arrest and inhibits the proliferation and migration of human BEL7402 hepatocellular carcinoma cells. Mol Med Rep. 2015;12(6):7963–70.  https://doi.org/10.3892/mmr.2015.4477.CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Pourkhalili N, Ghahremani MH, Farsandaj N, Tavajohi S, Majdzadeh M, Parsa M, et al. Evaluation of anti-invasion effect of cannabinoids on human hepatocarcinoma cells. Toxicol Mech Methods. 2013;23(2):120–6.  https://doi.org/10.3109/15376516.2012.730559.CrossRefGoogle Scholar
  255. 255.
    Guzman M, Duarte MJ, Blazquez C, Ravina J, Rosa MC, Galve-Roperh I, et al. A pilot clinical study of delta9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br J Cancer. 2006;95(2):197–203.  https://doi.org/10.1038/sj.bjc.6603236.CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Zogopoulos P, Korkolopoulou P, Patsouris E, Theocharis S. The antitumor action of cannabinoids on glioma tumorigenesis. Histol Histopathol. 2015;30(6):629–45.  https://doi.org/10.14670/hh-30.629.CrossRefGoogle Scholar
  257. 257.
    Ramer R, Hinz B. Antitumorigenic targets of cannabinoids: current status and implications. Expert Opin Ther Targets. 2016;20(10):1219–35.  https://doi.org/10.1080/14728222.2016.1177512.CrossRefGoogle Scholar
  258. 258.
    Basavarajappa BS, Cooper TB, Hungund BL. Chronic ethanol administration down-regulates cannabinoid receptors in mouse brain synaptic plasma membrane. Brain Res. 1998;793(1–2):212–8.CrossRefGoogle Scholar
  259. 259.
    Thanos PK, Dimitrakakis ES, Rice O, Gifford A, Volkow ND. Ethanol self-administration and ethanol conditioned place preference are reduced in mice lacking cannabinoid CB1 receptors. Behav Brain Res. 2005;164(2):206–13.  https://doi.org/10.1016/j.bbr.2005.06.021.CrossRefGoogle Scholar
  260. 260.
    Serrano A, Rivera P, Pavon FJ, Decara J, Suarez J, Rodriguez de Fonseca F, et al. Differential effects of single versus repeated alcohol withdrawal on the expression of endocannabinoid system-related genes in the rat amygdala. Alcohol Clin Exp Res. 2012;36(6):984–94.  https://doi.org/10.1111/j.1530-0277.2011.01686.x.CrossRefGoogle Scholar
  261. 261.
    Gallate JE, Mallet PE, McGregor IS. Combined low dose treatment with opioid and cannabinoid receptor antagonists synergistically reduces the motivation to consume alcohol in rats. Psychopharmacology (Berl). 2004;173(1–2):210–6.  https://doi.org/10.1007/s00213-003-1694-5.CrossRefGoogle Scholar
  262. 262.
    Mitrirattanakul S, Lopez-Valdes HE, Liang J, Matsuka Y, Mackie K, Faull KF, et al. Bidirectional alterations of hippocampal cannabinoid 1 receptors and their endogenous ligands in a rat model of alcohol withdrawal and dependence. Alcohol Clin Exp Res. 2007;31(5):855–67.  https://doi.org/10.1111/j.1530-0277.2007.00366.x.CrossRefGoogle Scholar
  263. 263.
    Femenia T, Garcia-Gutierrez MS, Manzanares J. CB1 receptor blockade decreases ethanol intake and associated neurochemical changes in fawn-hooded rats. Alcohol Clin Exp Res. 2010;34(1):131–41.  https://doi.org/10.1111/j.1530-0277.2009.01074.x.CrossRefGoogle Scholar
  264. 264.
    Rubio M, Villain H, Docagne F, Roussel BD, Ramos JA, Vivien D, et al. Pharmacological activation/inhibition of the cannabinoid system affects alcohol withdrawal-induced neuronal hypersensitivity to excitotoxic insults. PLoS One. 2011;6(8):e23690.  https://doi.org/10.1371/journal.pone.0023690.CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Hungund BL, Basavarajappa BS. Distinct differences in the cannabinoid receptor binding in the brain of C57BL/6 and DBA/2 mice, selected for their differences in voluntary ethanol consumption. J Neurosci Res. 2000;60(1):122–8.CrossRefGoogle Scholar
  266. 266.
    Cippitelli A, Bilbao A, Gorriti MA, Navarro M, Massi M, Piomelli D, et al. The anandamide transport inhibitor AM404 reduces ethanol self-administration. Eur J Neurosci. 2007;26(2):476–86.  https://doi.org/10.1111/j.1460-9568.2007.05665.x.CrossRefGoogle Scholar
  267. 267.
    Poncelet M, Maruani J, Calassi R, Soubrie P. Overeating, alcohol and sucrose consumption decrease in CB1 receptor deleted mice. Neurosci Lett. 2003;343(3):216–8.CrossRefGoogle Scholar
  268. 268.
    Wang L, Liu J, Harvey-White J, Zimmer A, Kunos G. Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proc Natl Acad Sci USA. 2003;100(3):1393–8.  https://doi.org/10.1073/pnas.0336351100.CrossRefGoogle Scholar
  269. 269.
    Lallemand F, de Witte P. Ethanol induces higher BEC in CB1 cannabinoid receptor knockout mice while decreasing ethanol preference. Alcohol Alcohol. 2005;40(1):54–62.  https://doi.org/10.1093/alcalc/agh115.CrossRefGoogle Scholar
  270. 270.
    Vinod KY, Yalamanchili R, Thanos PK, Vadasz C, Cooper TB, Volkow ND, et al. Genetic and pharmacological manipulations of the CB(1) receptor alter ethanol preference and dependence in ethanol preferring and nonpreferring mice. Synapse. 2008;62(8):574–81.  https://doi.org/10.1002/syn.20533.CrossRefPubMedPubMedCentralGoogle Scholar
  271. 271.
    Vinod KY, Sanguino E, Yalamanchili R, Manzanares J, Hungund BL. Manipulation of fatty acid amide hydrolase functional activity alters sensitivity and dependence to ethanol. J Neurochem. 2008;104(1):233–43.  https://doi.org/10.1111/j.1471-4159.2007.04956.x.CrossRefGoogle Scholar
  272. 272.
    Ortega-Álvaro A, Ternianov A, Aracil-Fernandez A, Navarrete F, Garcia-Gutierrez MS, Manzanares J. Role of cannabinoid CB2 receptor in the reinforcing actions of ethanol. Addict Biol. 2015;20(1):43–55.  https://doi.org/10.1111/adb.12076.CrossRefGoogle Scholar
  273. 273.
    Ferrer B, Bermudez-Silva FJ, Bilbao A, Alvarez-Jaimes L, Sanchez-Vera I, Giuffrida A, et al. Regulation of brain anandamide by acute administration of ethanol. Biochem J. 2007;404(1):97–104.  https://doi.org/10.1042/bj20061898.CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Rubio M, McHugh D, Fernandez-Ruiz J, Bradshaw H, Walker JM. Short-term exposure to alcohol in rats affects brain levels of anandamide, other N-acylethanolamines and 2-arachidonoyl-glycerol. Neurosci Lett. 2007;421(3):270–4.  https://doi.org/10.1016/j.neulet.2007.05.052.CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Gonzalez S, Cascio MG, Fernandez-Ruiz J, Fezza F, Di Marzo V, Ramos JA. Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Res. 2002;954(1):73–81.CrossRefGoogle Scholar
  276. 276.
    Vinod KY, Yalamanchili R, Xie S, Cooper TB, Hungund BL. Effect of chronic ethanol exposure and its withdrawal on the endocannabinoid system. Neurochem Int. 2006;49(6):619–25.  https://doi.org/10.1016/j.neuint.2006.05.002.CrossRefGoogle Scholar
  277. 277.
    Colombo G, Serra S, Brunetti G, Gomez R, Melis S, Vacca G, et al. Stimulation of voluntary ethanol intake by cannabinoid receptor agonists in ethanol-preferring sP rats. Psychopharmacology (Berl). 2002;159(2):181–7.  https://doi.org/10.1007/s002130100887.CrossRefGoogle Scholar
  278. 278.
    Alen F, Santos A, Moreno-Sanz G, Gonzalez-Cuevas G, Gine E, Franco-Ruiz L, et al. Cannabinoid-induced increase in relapse-like drinking is prevented by the blockade of the glycine-binding site of N-methyl-d-aspartate receptors. Neuroscience. 2009;158(2):465–73.  https://doi.org/10.1016/j.neuroscience.2008.10.002.CrossRefGoogle Scholar
  279. 279.
    Klugmann M, Klippenstein V, Leweke FM, Spanagel R, Schneider M. Cannabinoid exposure in pubertal rats increases spontaneous ethanol consumption and NMDA receptor associated protein levels. Int J Neuropsychopharmacol. 2011;14(4):505–17.  https://doi.org/10.1017/s1461145710001562.CrossRefGoogle Scholar
  280. 280.
    Lopez-Moreno JA, Gonzalez-Cuevas G, Rodriguez de Fonseca F, Navarro M. Long-lasting increase of alcohol relapse by the cannabinoid receptor agonist WIN 55,212-2 during alcohol deprivation. J Neurosci. 2004;24(38):8245–52.  https://doi.org/10.1523/jneurosci.2179-04.2004.CrossRefGoogle Scholar
  281. 281.
    Hamelink C, Hampson A, Wink DA, Eiden LE, Eskay RL. Comparison of cannabidiol, antioxidants, and diuretics in reversing binge ethanol-induced neurotoxicity. J Pharmacol Exp Ther. 2005;314(2):780–8.  https://doi.org/10.1124/jpet.105.085779.CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Liput DJ, Hammell DC, Stinchcomb AL, Nixon K. Transdermal delivery of cannabidiol attenuates binge alcohol-induced neurodegeneration in a rodent model of an alcohol use disorder. Pharmacol Biochem Behav. 2013;111:120–7.  https://doi.org/10.1016/j.pbb.2013.08.013.CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Soyka M, Koller G, Schmidt P, Lesch OM, Leweke M, Fehr C, et al. Cannabinoid receptor 1 blocker rimonabant (SR 141716) for treatment of alcohol dependence: results from a placebo-controlled, double-blind trial. J Clin Psychopharmacol. 2008;28(3):317–24.  https://doi.org/10.1097/JCP.0b013e318172b8bc.CrossRefGoogle Scholar
  284. 284.
    Weerts EM, Kim YK, Wand GS, Dannals RF, Lee JS, Frost JJ, et al. Differences in delta- and mu-opioid receptor blockade measured by positron emission tomography in naltrexone-treated recently abstinent alcohol-dependent subjects. Neuropsychopharmacology. 2008;33(3):653–65.  https://doi.org/10.1038/sj.npp.1301440.CrossRefGoogle Scholar
  285. 285.
    George DT, Herion DW, Jones CL, Phillips MJ, Hersh J, Hill D, et al. Rimonabant (SR141716) has no effect on alcohol self-administration or endocrine measures in nontreatment-seeking heavy alcohol drinkers. Psychopharmacology (Berl). 2010;208(1):37–44.  https://doi.org/10.1007/s00213-009-1704-3.CrossRefGoogle Scholar
  286. 286.
    Metrik J, Spillane NS, Leventhal AM, Kahler CW. Marijuana use and tobacco smoking cessation among heavy alcohol drinkers. Drug Alcohol Depend. 2011;119(3):194–200.  https://doi.org/10.1016/j.drugalcdep.2011.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  287. 287.
    Solinas M, Panlilio LV, Tanda G, Makriyannis A, Matthews SA, Goldberg SR. Cannabinoid agonists but not inhibitors of endogenous cannabinoid transport or metabolism enhance the reinforcing efficacy of heroin in rats. Neuropsychopharmacology. 2005;30(11):2046–57.  https://doi.org/10.1038/sj.npp.1300754.CrossRefGoogle Scholar
  288. 288.
    Li JX, Koek W, France CP. Interactions between delta(9)-tetrahydrocannabinol and heroin: self-administration in rhesus monkeys. Behav Pharmacol. 2012;23(8):754–61.  https://doi.org/10.1097/FBP.0b013e32835a3907.CrossRefPubMedPubMedCentralGoogle Scholar
  289. 289.
    Maguire DR, France CP. Effects of daily delta-9-tetrahydrocannabinol treatment on heroin self-administration in rhesus monkeys. Behav Pharmacol. 2016;27(2-3 Spec Issue):249–57.  https://doi.org/10.1097/fbp.0000000000000192.CrossRefPubMedPubMedCentralGoogle Scholar
  290. 290.
    Karimi S, Azizi P, Shamsizadeh A, Haghparast A. Role of intra-accumbal cannabinoid CB1 receptors in the potentiation, acquisition and expression of morphine-induced conditioned place preference. Behav Brain Res. 2013;247:125–31.  https://doi.org/10.1016/j.bbr.2013.03.022.CrossRefGoogle Scholar
  291. 291.
    Khaleghzadeh-Ahangar H, Haghparast A. Intra-accumbal CB1 receptor blockade reduced extinction and reinstatement of morphine. Physiol Behav. 2015;149:212–9.  https://doi.org/10.1016/j.physbeh.2015.06.005.CrossRefGoogle Scholar
  292. 292.
    Fattore L, Spano S, Cossu G, Deiana S, Fadda P, Fratta W. Cannabinoid CB(1) antagonist SR 141716A attenuates reinstatement of heroin self-administration in heroin-abstinent rats. Neuropharmacology. 2005;48(8):1097–104.  https://doi.org/10.1016/j.neuropharm.2005.01.022.CrossRefGoogle Scholar
  293. 293.
    Katsidoni V, Anagnostou I, Panagis G. Cannabidiol inhibits the reward-facilitating effect of morphine: involvement of 5-HT1A receptors in the dorsal raphe nucleus. Addict Biol. 2013;18(2):286–96.  https://doi.org/10.1111/j.1369-1600.2012.00483.x.CrossRefGoogle Scholar
  294. 294.
    Wilkerson JL, Ghosh S, Mustafa M, Abdullah RA, Niphakis MJ, Cabrera R, et al. The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice. Neuropharmacology. 2017;114:156–67.  https://doi.org/10.1016/j.neuropharm.2016.11.015.CrossRefGoogle Scholar
  295. 295.
    Stopponi S, Soverchia L, Ubaldi M, Cippitelli A, Serpelloni G, Ciccocioppo R. Chronic THC during adolescence increases the vulnerability to stress-induced relapse to heroin seeking in adult rats. Eur Neuropsychopharmacol. 2014;24(7):1037–45.  https://doi.org/10.1016/j.euroneuro.2013.12.012.CrossRefGoogle Scholar
  296. 296.
    Prilutskaya M, Bersani FS, Corazza O, Molchanov S. Impact of synthetic cannabinoids on the duration of opioid-related withdrawal and craving among patients of addiction clinics in Kazakhstan: a prospective case-control study. Hum Psychopharmacol. 2017.  https://doi.org/10.1002/hup.2618 (Epub 2017 Jun 20).CrossRefPubMedGoogle Scholar
  297. 297.
    Merritt JC, Crawford WJ, Alexander PC, Anduze AL, Gelbart SS. Effect of marihuana on intraocular and blood pressure in glaucoma. Ophthalmology. 1980;87(3):222–8.CrossRefPubMedGoogle Scholar
  298. 298.
    Porcella A, Maxia C, Gessa GL, Pani L. The synthetic cannabinoid WIN55212-2 decreases the intraocular pressure in human glaucoma resistant to conventional therapies. Eur J Neurosci. 2001;13(2):409–12.CrossRefPubMedGoogle Scholar
  299. 299.
    Chien FY, Wang RF, Mittag TW, Podos SM. Effect of WIN 55212-2, a cannabinoid receptor agonist, on aqueous humor dynamics in monkeys. Arch Ophthalmol. 2003;121(1):87–90.CrossRefPubMedGoogle Scholar
  300. 300.
    Song ZH, Slowey CA. Involvement of cannabinoid receptors in the intraocular pressure-lowering effects of WIN55212-2. J Pharmacol Exp Ther. 2000;292(1):136–9.PubMedPubMedCentralGoogle Scholar
  301. 301.
    Szczesniak AM, Maor Y, Robertson H, Hung O, Kelly ME. Nonpsychotropic cannabinoids, abnormal cannabidiol and canabigerol-dimethyl heptyl, act at novel cannabinoid receptors to reduce intraocular pressure. J Ocul Pharmacol Ther. 2011;27(5):427–35.  https://doi.org/10.1089/jop.2011.0041.CrossRefPubMedPubMedCentralGoogle Scholar
  302. 302.
    Merritt JC, Perry DD, Russell DN, Jones BF. Topical delta 9-tetrahydrocannabinol and aqueous dynamics in glaucoma. J Clin Pharmacol. 1981;21(8–9 Suppl.):467s–71s.CrossRefPubMedPubMedCentralGoogle Scholar
  303. 303.
    Crandall J, Matragoon S, Khalifa YM, Borlongan C, Tsai NT, Caldwell RB, et al. Neuroprotective and intraocular pressure-lowering effects of (-)delta9-tetrahydrocannabinol in a rat model of glaucoma. Ophthalmic Res. 2007;39(2):69–75.  https://doi.org/10.1159/000099240.CrossRefPubMedPubMedCentralGoogle Scholar
  304. 304.
    El-Remessy AB, Khalil IE, Matragoon S, Abou-Mohamed G, Tsai NJ, Roon P, et al. Neuroprotective effect of (-)delta9-tetrahydrocannabinol and cannabidiol in N-methyl-d-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am J Pathol. 2003;163(5):1997–2008.CrossRefPubMedPubMedCentralGoogle Scholar
  305. 305.
    Pinar-Sueiro S, Zorrilla Hurtado JA, Veiga-Crespo P, Sharma SC, Vecino E. Neuroprotective effects of topical CB1 agonist WIN 55212-2 on retinal ganglion cells after acute rise in intraocular pressure induced ischemia in rat. Exp Eye Res. 2013;110:55–8.  https://doi.org/10.1016/j.exer.2013.02.009.CrossRefPubMedPubMedCentralGoogle Scholar
  306. 306.
    Slusar JE, Cairns EA, Szczesniak AM, Bradshaw HB, Di Polo A, Kelly ME. The fatty acid amide hydrolase inhibitor, URB597, promotes retinal ganglion cell neuroprotection in a rat model of optic nerve axotomy. Neuropharmacology. 2013;72:116–25.  https://doi.org/10.1016/j.neuropharm.2013.04.018.CrossRefPubMedPubMedCentralGoogle Scholar
  307. 307.
    Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA. 2015;313(24):2456–73.  https://doi.org/10.1001/jama.2015.6358.CrossRefPubMedPubMedCentralGoogle Scholar
  308. 308.
    Danovitch I, Gorelick DA. State of the art treatments for cannabis dependence. Psychiatr Clin N Am. 2012;35(2):309–26.  https://doi.org/10.1016/j.psc.2012.03.003.CrossRefGoogle Scholar
  309. 309.
    Bonnet U, Preuss UW. The cannabis withdrawal syndrome: current insights. Subst Abuse Rehabil. 2017;8:9–37.  https://doi.org/10.2147/sar.s109576.CrossRefPubMedPubMedCentralGoogle Scholar
  310. 310.
    Soyka M, Preuss U, Hoch E. Cannabis-induced disorders. Nervenarzt. 2017;88(3):311–25.  https://doi.org/10.1007/s00115-017-0281-7.CrossRefPubMedPubMedCentralGoogle Scholar
  311. 311.
    Wright S, Metts J. Recreational cannabinoid use: the hazards behind the “high”. J Fam Pract. 2016;65(11):770–9.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutics and Food TechnologyFaculty of PharmacyMadridSpain
  2. 2.Institute of Industrial PharmacyComplutense University of MadridMadridSpain

Personalised recommendations