Skip to main content
Log in

Three-dimensional bio-printing equipment technologies for tissue engineering and regenerative medicine

  • Special Issue–Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Three-Dimensional (3D) printing technologies have been widely used in the medical sector for the production of medical assistance equipment and surgical guides, particularly 3D bio-printing that combines 3D printing technology with biocompatible materials and cells in field of tissue engineering and regenerative medicine. These additive manufacturing technologies can make patient-made production from medical image data. Thus, the application of 3D bio-printers with biocompatible materials has been increasing. Currently, 3D bio-printing technology is in the early stages of research and development but it has great potential in the fields of tissue and organ regeneration. The present paper discusses the history and types of 3D printers, the classification of 3D bio-printers, and the technology used to manufacture artificial tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kodama H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum 1981;52:1770.

    Article  Google Scholar 

  2. Hull CW. Apparatus for production of three-dimensional objects by stereolithography. United States patent US 19864575330. 1986 Mar 11.

    Google Scholar 

  3. Deckard CR. Method and apparatus for producing parts by selective sintering. United States patent US 19894863538. 1989 Sep 5.

    Google Scholar 

  4. Hornbeck LJ. Spatial light modulator and method. United States patent US 19874662746. 1987 May 5.

    Google Scholar 

  5. Feygin M. Apparatus and method for forming an integral object from laminations. United States patent US 19984752352. 1988 Oct 11.

    Google Scholar 

  6. Crump SS. Apparatus and method for creating three-dimensional objects. United States patent US 19925121329. 1992 Jun 9.

    Google Scholar 

  7. Yamane M, Kawaguchi T, Kagayama S, Higashiyama S, Suzuki K, Sakai J, et al. Apparatus and method for forming three-dimensional article. United States patent US 19915059266. 1991 Oct 22.

    Google Scholar 

  8. Almquist TA, Smalley DR. Thermal stereolighography. United States patent US 19925141680. 1992 Aug 25.

    Google Scholar 

  9. Sachs EM, Haggerty JS, Cima MJ, Williams PA. Three-dimensional printing techniques. United States patent US 19935204055. 1993 Apr 20.

    Google Scholar 

  10. Almquist TA, Smalley DR. Thermal stereolithography. United States patent US 19925501824. 1996 Mar 26.

    Google Scholar 

  11. ISO/ASTM [Internet]. ISO/ASTM 52900:2015(en) Additive manufacturing–General principles–Terminology [cited 2016 Sep 13]. Available from: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-1:v1:en.

    Google Scholar 

  12. SAI GLOBAL [Internet]. ASTM F2792-12a. Standard terminology for additive manufacturing technologies [cited 2016 Sep 13]. Available from: http://web.mit.edu/2.810/www/files/readings/AdditiveManufacturingTerminology.pdf.

    Google Scholar 

  13. Meteyer S, Xu X, Perry N, Zhao YF. Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia CIRP 2014;15:19–25.

    Article  Google Scholar 

  14. Xu X, Meteyer S, Perry N, Zhao YF. Energy consumption model of binder-jetting additive manufacturing processes. Int J Prod Res 2015;53:7005–7015.

    Article  Google Scholar 

  15. Geiger M, Steger W, Greul M, Sindel M. Multiphase jet solidification-a new process towards metal prototypes and a new data interface. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: The University of Texas at Austin; 1994. p. 9–16.

    Google Scholar 

  16. Sachs E, Cima M, Cornie J, Brancazio D, Bredt J, Curodeau A, et al. Three-dimensional printing: the physics and implications of additive manufacturing. CIRP Ann-Manuf Techn 1993;42:257–260.

    Article  Google Scholar 

  17. 3D Systems [Internet]. About 3D Systems [cited 2016 Sep 13]. Available from: http://www.3dsystems.com/3d-printers.

    Google Scholar 

  18. Bimber BA, Hamilton RF, Keist J, Palmer TA. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition. Mater Sci Eng A 2016;674:125–134.

    Article  CAS  Google Scholar 

  19. Wang Z, Palmer TA, Beese AM. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Materialia 2016;110:226–235.

    Article  CAS  Google Scholar 

  20. Chen J, Xue L. Process-induced microstructural characteristics of laser consolidated IN-738 superalloy. Mater Sci Eng A 2010;527:7318–7328.

    Article  CAS  Google Scholar 

  21. Ding Y, Dwivedi R, Kovacevic R. Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comput Integr Manuf 2017;44:67–76.

    Article  Google Scholar 

  22. Insstek [Internet]. Metal 3D Printers [cited 2016 Sep 13]. Available from: http://www.insstek.com/content/standard.

    Google Scholar 

  23. TRUMPF [Internet]. 3-D-Drucksysteme [cited 2016 Sep 13]. Available from: http://www.trumpf-laser.com/de/produkte/3-d-drucksysteme.html.

    Google Scholar 

  24. Stratasys [Internet]. 3D Printers [cited 2016 Sep 13]. Available from: http://www.stratasys.com/3d-printers.

    Google Scholar 

  25. Lee CS, Kim SG, Kim HJ, Ahn SH. Measurement of anisotropic compressive strength of rapid prototyping parts. J Mater Process Technol 2007;187:627–630.

    Article  CAS  Google Scholar 

  26. Comb JW, Priedeman WR, Turley PW. FDM technology process improvements. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: The University of Texas at Austin; 1994. p. 42–49.

    Google Scholar 

  27. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C 2003;23:611–620.

    Article  CAS  Google Scholar 

  28. Masood SH, Song WQ. Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater Des 2004;25:587–594.

    Article  CAS  Google Scholar 

  29. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002;23:1169–1185.

    Article  CAS  PubMed  Google Scholar 

  30. Singh R. Process capability study of polyjet printing for plastic components. J Mech Sci Technol 2011;25:1011–1015.

    Article  Google Scholar 

  31. Ibrahim D, Broilo TL, Heitz C, de Oliveira MG, de Oliveira HW, Nobre SM, et al. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg 2009;37:167–173.

    Article  PubMed  Google Scholar 

  32. Sochol RD, Sweet E, Glick CC, Venkatesh S, Avetisyan A, Ekman KF, et al. 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip 2016;16:668–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ashley S. Rapid concept modelers. Mech Eng 1996;118:64.

    Google Scholar 

  34. EOS [Internet] [cited 2016 Sep 13]. Available from: https://www.eos.info/en.

  35. Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Kadri NA, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater 2015 May [cited 2015 Aug 13]. Available from: http://www.tandfonline.com/doi/pdf/10.1088/1468-6996/16/3/033502?needAccess=true.

    Google Scholar 

  36. Sindel M, Pintat T, Greul M, NyrhiHi O, Wilkening C. Direct laser sintering of metals and metal melt infiltration for near net shape fabrication of components. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: The University of Texas at Austin; 1994. p. 94–101.

    Google Scholar 

  37. Pintat T, Sindel M, Greul M, Burblies A, Wilkening C. Integration of numerical modeling and laser sintering with investment casting. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: The University of Texas at Austin; 1994. p. 175–180.

    Google Scholar 

  38. Eyerer P, Shen J, Keller B. LAPS-Laser Aided F.owder S.olidification-Technology for the direct production of metallic and polymer parts. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: The University of Texas at Austin; 1994. p. 82–93.

    Google Scholar 

  39. Lee, G, Barlow JW. Selective laser sintering of calcium phosphate powders. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: he University of Texas at Austin; 1994. p. 191–197.

    Google Scholar 

  40. Forderhase P, McAlea K, Michalewicz M, Ganninger M, Firestone K. SLSTM prototypes from Nylon. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: he University of Texas at Austin; 1994. p. 102–109.

    Google Scholar 

  41. Yi X, Tan ZJ, Yu WJ, Li J, Li BJ, Huang BY, et al. Three dimensional printing of carbon/carbon composites by selective laser sintering. Carbon 2016;96:603–607.

    Article  CAS  Google Scholar 

  42. Cubic Technology [Internet]. Cubic Technologies Rapdid Prototyping Product Offerings [cited 2016 Sep 13]. Available from: http://www.cubictechnologies.com/.

    Google Scholar 

  43. Chiu YY, Liao YS, Hou CC. Automatic fabrication for bridged laminated object manufacturing (LOM) process. J Mater Process Technol 2003;140:179–184.

    Article  Google Scholar 

  44. Daufenbach CGJ, McMillin S. Solid freeform fabrication of functional ceramic components using a laminated object manufacturing technique. In: Marcus HL, Beaman JJ, Barlow JW, Bourell DL, Crawford RH, editors. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: he University of Texas at Austin; 1994. p. 17.

    Google Scholar 

  45. Mcor Technologies [Internet] [cited 2016 Sep 13]. Available from: http://mcortechnologies.com/3d-printers/.

  46. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharmaceutics 2016;503:207–212.

    Article  CAS  Google Scholar 

  47. Weng Z, Zhou Y, Lin W, Senthil T, Wu L. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Compos Part A Appl Sci Manuf 2016;88:234–242.

    Article  CAS  Google Scholar 

  48. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 2003;64:65–69.

    Article  PubMed  CAS  Google Scholar 

  49. Formlabs [Internet] [cited 2016 Sep 13]. Available from: https://formlabs.com/.

  50. Union Tech [Internet] [cited 2016 Sep 13]. Available from: http://www.en.union-tek.com/about_us/.

  51. CMET [Internet]. Our stereolithography system and stereolithography applications (Resin) [cited 2016 Sep 13]. Available from: http://www.cmet.co.jp/eng/.

  52. DWS [Internet] [cited 2016 Sep 13]. Available from: http://www.dwssystems.com/.

  53. Lu Y, Mapili G, Suhali G, Chen S, Roy K. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 2006;77:396–405.

    Article  PubMed  CAS  Google Scholar 

  54. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, et al. Continuous liquid interface production of 3D objects. Science 2015;347:1349–1352.

    Article  CAS  PubMed  Google Scholar 

  55. Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P, Nichol JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012;33:3824–3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dean D, Mott E, Luo X, Busso M, Wang MO, Vorwald C, et al. Multiple initiators and dyes for continuous Digital Light Processing (cDLP) additive manufacture of resorbable bone tissue engineering scaffolds: a new method and new material to fabricate resorbable scaffold for bone tissue engineering via continuous Digital Light Processing. Virtual Phys Prototyp 2014;9:3–9.

    Article  Google Scholar 

  57. EnvisionTEC [Internet] [cited 2016 Sep 13]. Available from: https://envisiontec.com/.

  58. Langer R, Vacanti JP. R TIC L E. Science 1993;260:14.

    Article  Google Scholar 

  59. Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Science 2002;295:1009–1014.

    Article  CAS  PubMed  Google Scholar 

  60. Landers R, Mülhaupt R. Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng 2000;282:17–21.

    Article  CAS  Google Scholar 

  61. Landers R, Hübner U, Schmelzeisen R, Mülhaupt R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 2002;23:4437–4447.

    Article  CAS  PubMed  Google Scholar 

  62. El-Ayoubi R, Eliopoulos N, Diraddo R, Galipeau J, Yousefi AM. Design and fabrication of 3D porous scaffolds to facilitate cell-based gene therapy. Tissue Eng Part A 2008;14:1037–1048.

    Article  CAS  PubMed  Google Scholar 

  63. Mironov V, Kasyanov V, Markwald RR. Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 2011;22:667–673.

    Article  CAS  PubMed  Google Scholar 

  64. Mironov V. Printing technology to produce living tissue. Expert Opin Biol Ther 2003;3:701–704.

    Article  PubMed  Google Scholar 

  65. Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, et al. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta biomaterialia 2014;10:2269–2281.

    Article  CAS  PubMed  Google Scholar 

  66. Pfister A, Landers R, Laib A, Hübner U, Schmelzeisen R, Mülhaupt R. Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci A Polym Chem 2004;42:624–638.

    Article  CAS  Google Scholar 

  67. Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 2007;28:5291–5297.

    Article  CAS  PubMed  Google Scholar 

  68. Wilson WC Jr, Boland T. Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 2003;272:491–496.

    Article  PubMed  Google Scholar 

  69. Boland T, Mironov V, Gutowska A, Roth E, Markwald RR. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 2003;272:497–502.

    Article  PubMed  Google Scholar 

  70. Ahn S, Lee H, Bonassar LJ, Kim G. Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying. Biomacromolecules 2012;13:2997–3003.

    Article  CAS  PubMed  Google Scholar 

  71. Klebe RJ, Thomas CA, Grant GM, Grant A, Gosh P. Cytoscription: computer controlled micropositioning of cell adhesion proteins and cells. J Tissue Cult Methods 1994;16:189–192.

    Article  Google Scholar 

  72. Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials 2004;25:3707–3715.

    Article  CAS  PubMed  Google Scholar 

  73. Xu T, Petridou S, Lee EH, Roth EA, Vyavahare NR, Hickman JJ, et al. Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol Bioeng 2004;85:29–33.

    Article  CAS  PubMed  Google Scholar 

  74. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials 2005;26:93–99.

    Article  PubMed  CAS  Google Scholar 

  75. Boland T, Wilson WC, Xu T. Ink-jet printing of viable cells. United States patent US 20067051654. 2006 May 30.

    Google Scholar 

  76. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 2003;21:157–161.

    Article  CAS  PubMed  Google Scholar 

  77. Forgacs G, Jakab K, Neagu A, Mironov V. Self-assembling cell aggregates and methods of making engineered tissue using the same. United States patent US 20128241905. 2012 Aug 14.

    Google Scholar 

  78. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009;30:5910–5917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Organovo [Internet] [cited 2016 Sep 13]. Available from: http://organovo.com/.

  80. Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat commun 2014;5:3935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nickenig HJ, Eitner S. Reliability of implant placement after virtual planning of implant positions using cone beam CT data and surgical (guide) templates. J Craniomaxillofac Surg 2007;35:207–211.

    Article  PubMed  Google Scholar 

  82. Becker CM, Kaiser DA. Surgical guide for dental implant placement. J Prosthet Dent 2000;83:248–251.

    Article  CAS  PubMed  Google Scholar 

  83. Ciocca L, De Crescenzio F, Fantini M, Scotti R. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comput Med Imaging Graph 2009;33:58–62.

    Article  CAS  PubMed  Google Scholar 

  84. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat biotechnol 2014;32:773–785.

    Article  CAS  PubMed  Google Scholar 

  85. Nishiyama Y, Nakamura M, Henmi C, Yamaguchi K, Mochizuki S, Nakagawa H, et al. Fabrication of 3D cell supporting structures with multi-materials using the bio-printer. In: ASME 2007 International Manufacturing Science and Engineering Conference. Proceedings of American Society of Mechanical Engineers; 2007 Oct 15-18; Atlanta, GA: Solid Freeform Fabr Biomed Tissue Eng; 2008. p. 97–102.

    Google Scholar 

  86. Saunders RE, Gough JE, Derby B. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 2008;29:193–203.

    Article  CAS  PubMed  Google Scholar 

  87. Khalil S, Sun W. Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 2009;131:111002.

    Article  PubMed  Google Scholar 

  88. Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng 2010;106:963–969.

    Article  CAS  PubMed  Google Scholar 

  89. Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater 2010;22:673–685.

    Article  CAS  PubMed  Google Scholar 

  90. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009;30:6221–6227.

    Article  CAS  PubMed  Google Scholar 

  91. Demirci U, Montesano G. Cell encapsulating droplet vitrification. Lab Chip 2007;7:1428–1433.

    Article  CAS  PubMed  Google Scholar 

  92. Shim JH, Lee JS, Kim JY, Cho DW. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 2012;22:085014.

    Article  CAS  Google Scholar 

  93. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials 2009;30:2164–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Khalil S, Nam J, Sun W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J 2005;11:9–17.

    Article  Google Scholar 

  95. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, et al. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng 2004;10:1566–1576.

    Article  CAS  PubMed  Google Scholar 

  96. Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng 2006;12:1325–1335.

    Article  CAS  PubMed  Google Scholar 

  97. Tabriz AG, Hermida MA, Leslie NR, Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 2015;7:045012.

    Article  PubMed  Google Scholar 

  98. El-Ayoubi R, DeGrandpré C, DiRaddo R, Yousefi AM, Lavigne P. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J Biomater Appl 2011;25:429–444.

    Article  CAS  PubMed  Google Scholar 

  99. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 2009;30:1587–1595.

    Article  CAS  PubMed  Google Scholar 

  100. Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB. Application of laser printing to mammalian cells. Thin Solid Films 2004;453:383–387.

    Article  CAS  Google Scholar 

  101. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010;31:7250–7256.

    Article  CAS  PubMed  Google Scholar 

  102. Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amédée J, et al. In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2010;2:014101.

    Article  PubMed  CAS  Google Scholar 

  103. Odde DJ, Renn MJ. Laser-guided direct writing for applications in biotechnology. Trends biotechnol 1999;17:385–389.

    Article  CAS  PubMed  Google Scholar 

  104. Odde DJ, Renn MJ. Laser-guided direct writing of living cells. Biotechnol Bioeng 2000;67:312–318.

    Article  CAS  PubMed  Google Scholar 

  105. Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB. Laser-based direct-write techniques for cell printing. Biofabrication 2010;2:032001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Sell S, Barnes C, Smith M, McClure M, Madurantakam P, Grant J, et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polymer International 2007;56:1349–1360.

    Article  CAS  Google Scholar 

  107. Martins A, Araújo JV, Reis RL, Neves NM. Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine (Lond) 2007;2:929–942.

    Article  Google Scholar 

  108. Garg K, Bowlin GL. Electrospinning jets and nanofibrous structures. Biomicrofluidics 2011;5:13403.

    Article  PubMed  CAS  Google Scholar 

  109. Taylor G. Electrically driven jets. P Roy SOC A-MATH PHY 1969;313:453–2475.

    Article  Google Scholar 

  110. Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer 2008;49:2387–2425.

    Article  CAS  Google Scholar 

  111. Park SH, Kim TG, Kim HC, Yang DY, Park TG. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater 2008;4:1198–1207.

    Article  CAS  PubMed  Google Scholar 

  112. Park SH, Koh UH, Kim M, Yang DY, Suh KY, Shin JH. Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding. Biofabrication 2014;6:024107.

    Article  PubMed  Google Scholar 

  113. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24:2077–2082.

    Article  CAS  PubMed  Google Scholar 

  114. Herbert N, Simpson D, Spence WD, Ion W. A preliminary investigation into the development of 3-D printing of prosthetic sockets. J Rehabil Res Dev 2005;42:141–146.

    Article  PubMed  Google Scholar 

  115. Zuniga J, Katsavelis D, Peck J, Stollberg J, Petrykowski M, Carson A, et al. Cyborg beast: a low-cost 3D-printed prosthetic hand for children with upper-limb differences. BMC Res Notes 2015;8:10.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Honiball JR. The application of 3D printing in reconstructive surgery. [dissertation]. Stellenbosch: University of Stellenbosch; 2010.

  117. Turkcadcam [Internet]. Rapid prototyping helps separate conjoined twins [cited 2016 Sep 13]. Available from: http://www.turkcadcam.net/rapor/otoinsa/uyg-medikal-conjoined-twins.html.

    Google Scholar 

  118. Silva DN, Gerhardt de Oliveira M, Meurer E, Meurer MI, Lopes da Silva JV, Santa-Bárbara A. Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg 2008;36:443–449.

    Article  PubMed  Google Scholar 

  119. Flügge TV, Nelson K, Schmelzeisen R, Metzger MC. Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery. J Oral Maxillofac Surg 2013;71:1340–1346.

    Article  PubMed  Google Scholar 

  120. Di Giacomo GA, Cury PR, de Araujo NS, Sendyk WR, Sendyk CL. Clinical application of stereolithographic surgical guides for implant placement: preliminary results. J Periodontol 2005;76:503–507.

    Article  PubMed  Google Scholar 

  121. Olszewski R, Tranduy K, Reychler H. Innovative procedure for computer-assisted genioplasty: three-dimensional cephalometry, rapid-prototyping model and surgical splint. Int J Oral Maxillofac Surg 2010;39:721–724.

    Article  CAS  PubMed  Google Scholar 

  122. Cassetta M, Pandolfi S, Giansanti M. Minimally invasive corticotomy in orthodontics: a new technique using a CAD/CAM surgical template. Int J Oral Maxillofac Surg 2015;44:830–833.

    Article  CAS  PubMed  Google Scholar 

  123. Murphy SV, Atala A. Organ engineering—combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. Bioessays 2013;35:163–172.

    Article  CAS  PubMed  Google Scholar 

  124. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today 2013;16:496–504.

    Article  CAS  Google Scholar 

  125. Kumar A, Mandal S, Barui S, Vasireddi R, Gbureck U, Gelinsky M, et al. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: processing related challenges and property assessment. Mater Sci Eng R Rep 2016;103:1–39.

    Article  Google Scholar 

  126. Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2005;74:782–788.

    Article  PubMed  CAS  Google Scholar 

  127. Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, et al. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 2010;30:2563–2567.

    Article  CAS  Google Scholar 

  128. Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 2005;16:1121–1124.

    Article  CAS  PubMed  Google Scholar 

  129. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 2012;30:546–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lee JH, Park SA, Park K, Kim JH, Kim KS, Lee J, et al. Fabrication and characterization of 3D scaffold using 3D plotting system. Chin Sci Bull 2010;55:94–98.

    Article  CAS  Google Scholar 

  131. Lee SJ, Lee D, Yoon TR, Kim HK, Jo HH, Park JS, et al. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater 2016;40:182–191.

    Article  CAS  PubMed  Google Scholar 

  132. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21:2529–2543.

    Article  CAS  PubMed  Google Scholar 

  133. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015;16:1489–1496.

    Article  CAS  PubMed  Google Scholar 

  134. Rhee S, Puetzer JL, Mason BN, ReinhartKing CA, Bonassar LJ. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng 2016;2:1800–1805.

    Article  CAS  Google Scholar 

  135. Woodfield TB, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 2004;25:4149–4161.

    Article  CAS  PubMed  Google Scholar 

  136. Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, et al. Controlled fabrication of a biological vascular substitute. Biomaterials 2006;27:1088–1094.

    Article  CAS  PubMed  Google Scholar 

  137. Pinnock CB, Meier EM, Joshi NN, Wu B, Lam MT. Customizable engineered blood vessels using 3D printed inserts. Methods 2016;99:20–27.

    Article  PubMed  Google Scholar 

  138. Ahn H, Ju YM, Takahashi H, Williams DF, Yoo JJ, Lee SJ, et al. Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomater 2015;16:14–22.

    Article  CAS  PubMed  Google Scholar 

  139. Naito Y, Rocco K, Kurobe H, Maxfield M, Breuer C, Shinoka T. Tissue engineering in the vasculature. Anat Rec (Hoboken) 2014;297:83–97.

    Article  CAS  Google Scholar 

  140. Lee SJ, Heo DN, Park JS, Kwon SK, Lee JH, Lee JH, et al. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. Phys Chem Chem Phys 2015;17:2996–2999.

    Article  CAS  PubMed  Google Scholar 

  141. Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, et al. Toward engineering functional organ modules by additive manufacturing. Biofabrication 2012;4:022001.

    Article  PubMed  Google Scholar 

  142. Martínez-Santamaría L, Guerrero-Aspizua S, Del Río M. Skin bioengineering: preclinical and clinical applications. Actas Dermosifiliogr 2012;103:5–11.

    Article  Google Scholar 

  143. Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 2013;8:e57741.

    Article  CAS  Google Scholar 

  144. Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 1982;215:174–176.

    Article  CAS  PubMed  Google Scholar 

  145. Binder KW, Allen AJ, Yoo JJ, Atala A. Drop-on-demand inkjet bioprinting: a primer. Gene Ther Regul 2011;6:33–49.

    Article  CAS  Google Scholar 

  146. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, et al. 3D printed bionic ears. Nano Lett 2013;13:2634–2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Struecker B, Raschzok N, Sauer IM. Liver support strategies: cutting-edge technologies. Nat Rev Gastroenterol Hepatol 2014;11:166–176.

    Article  CAS  PubMed  Google Scholar 

  148. Atala A. Tissue engineering of human bladder. Br Med Bull 2011;97:81–104.

    Article  PubMed  Google Scholar 

  149. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006;367:1241–1246.

    Article  PubMed  Google Scholar 

  150. Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med 2015;7:285ra64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Doo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.H., Lee, J., Park, S.A. et al. Three-dimensional bio-printing equipment technologies for tissue engineering and regenerative medicine. Tissue Eng Regen Med 13, 663–676 (2016). https://doi.org/10.1007/s13770-016-0148-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-0148-1

Key Words

Navigation