Horticulture, Environment, and Biotechnology

, Volume 57, Issue 6, pp 531–543 | Cite as

Targeted genome editing, an alternative tool for trait improvement in horticultural crops

  • Saminathan Subburaj
  • Luhua Tu
  • Yong-Tae Jin
  • Sangsu Bae
  • Pil Joon Seo
  • Yu Jin Jung
  • Geung-Joo Lee
Open Access
Review Article


Improving crops through plant breeding, an important approach for sustainable agriculture, has been utilized to increase the yield and quality of foods and other biomaterials for human use. Crops, including cereals, vegetables, ornamental flowers, fruits, and trees, have long been cultivated to produce high-quality products for human consumption. Conventional breeding technologies, such as natural cross-hybridization, mutation induction through physical or chemical mutagenesis, and modern transgenic tools are often used to enhance crop production. However, these breeding methods are sometimes laborious and complicated, especially when attempting to improve desired traits without inducing pleiotropic effects. Recently, targeted genome editing (TGE) technology using engineered nucleases, including meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR) nucleases, has been used to improve the traits of economically important plants. TGE has emerged as a novel plant-breeding tool that represents an alternative approach to classical breeding, but with higher mutagenic efficiency. Here, we briefly describe the basic principles of TGE and the types of engineered nucleases utilized, along with their advantages and disadvantages. We also discuss their potential use to improve the traits of horticultural crops through genome engineering.

Additional key words

CRISPR/Cas9 Genome engineering Plant breeding TALENs ZFNs 

Literature Cited

  1. Abiri R, Valdiani A, Maziah M, Shaharuddin NA, Sahebi M, Yusof Zy, Atabaki N, Talei D (2015) A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol 18:21–42PubMedGoogle Scholar
  2. Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, Corbin DR, Miles RR, Arnold NL, et al (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11:1126–1134PubMedCrossRefGoogle Scholar
  3. Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo Hanh, Jameson PE, et al (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238PubMedPubMedCentralCrossRefGoogle Scholar
  5. Allard RW (1999) Principles of plant breeding. John Wiley & Sons, New York, USA.Google Scholar
  6. Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–149PubMedCrossRefGoogle Scholar
  7. Araki M, Ishii T (2016) Consumer acceptance of food crops developed by genome editing. Plant Cell Rep 35:1507–1518PubMedCrossRefGoogle Scholar
  8. Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P, et al. (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371:49–65PubMedCrossRefGoogle Scholar
  9. Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: Chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Nat Acad Sci USA 96:8774–8778PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175PubMedPubMedCentralGoogle Scholar
  11. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bona U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512PubMedCrossRefGoogle Scholar
  12. Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 system. Plant Physiol 166:1292–1297PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brunet E, Simsek D, Tomishima M, DeKelver R, Choi VM, Gregory P et al. (2009) Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci USA 106:10620–10625PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, Diergaarde P, Groenendijk J, et al (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705PubMedCrossRefGoogle Scholar
  15. Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439PubMedCrossRefGoogle Scholar
  16. Center_for_Food_Safety (2015) Environmental, Farmer, and Consumer Groups Demand Higher Standards for Genetically Engineered (GE) Crop Regulations. tandards-for-genetically-engineered-gecrop-regulations. Accessed 19 Feb 2016Google Scholar
  17. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Char SN, Unger-Wallace E, Frame B, Briggs SA, Main M, Spalding MH, Vollbrecht E, Wang K, Yang B (2015) Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnol J 13:1002–1010PubMedCrossRefGoogle Scholar
  19. Chen W, Qian Y, Wu X, Sun Y, Wu X, Cheng X (2014) Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral-conserved nucleotide motif. Virus Genes 48:494–501PubMedCrossRefGoogle Scholar
  20. Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL (2002) Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 10:895–905PubMedCrossRefGoogle Scholar
  21. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141PubMedPubMedCentralCrossRefGoogle Scholar
  22. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A et al. (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761PubMedPubMedCentralCrossRefGoogle Scholar
  23. Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, et al. (2015) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176PubMedCrossRefGoogle Scholar
  24. D’Halluin K, Vanderstraeten C, Van Hulle J, Rosolowska J, Van Den Brande I, Pennewaert A, D’Hont K, Bossut M, Jantz D, et al (2013) Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol J 11:933–941PubMedPubMedCentralCrossRefGoogle Scholar
  25. Davis AJ, Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2:130–143PubMedPubMedCentralGoogle Scholar
  26. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343PubMedPubMedCentralCrossRefGoogle Scholar
  27. Djukanovic V, Smith J, Lowe K, Yang M, Gao H, Jones S, Nicholson MG, West A, Lape J, et al (2013) Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J 76:888–899PubMedCrossRefGoogle Scholar
  28. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096PubMedCrossRefGoogle Scholar
  29. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708PubMedPubMedCentralCrossRefGoogle Scholar
  30. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 18:5978–5990CrossRefGoogle Scholar
  31. Endo M, Mikami, M, Toki S (2016) Biallelic gene targeting in rice. Plant Physiol 170:667–677PubMedCrossRefGoogle Scholar
  32. Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, et al. (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31:2952–2962PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217PubMedPubMedCentralCrossRefGoogle Scholar
  34. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol 12:155–160PubMedCrossRefGoogle Scholar
  35. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK et al (2013) High-frequency offtarget mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61:176–187PubMedCrossRefGoogle Scholar
  38. Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015a) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110PubMedCrossRefGoogle Scholar
  39. Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y (2015b) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112:2275–2280PubMedPubMedCentralCrossRefGoogle Scholar
  40. GM_Freeze (2016) The case for regulating gene edited crops. Accessed 7 Mar 2016Google Scholar
  41. Gregory PJ, Johnson SN, Newton AC, Ingram JS (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60:2827–2838PubMedCrossRefGoogle Scholar
  42. Gupta M, DeKelver RC, Palta A, Clifford C, Gopalan S, Miller JC, Novak S, Desloover D, Gachotte D, et al (2012) Transcriptional activation of Brassica napus beta-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotechnol J 10:783–791PubMedCrossRefGoogle Scholar
  43. Gürlevik E, Schache P, Goez A, Kloos A, Woller N, Armbrecht N, Manns MP, Kubicka S, Kühnel F (2013) Meganuclease-mediated virus self-cleavage facilitates tumor-specific virus replication. Mol Ther 21:1738–1748PubMedPubMedCentralCrossRefGoogle Scholar
  44. Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940PubMedCrossRefGoogle Scholar
  45. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiao Y, et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hou Z, Zhang Y, Propson NE, Howden SE, Chu L-F, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 110:15644–15649PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G (2015) Sitedirected mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241:271–284PubMedCrossRefGoogle Scholar
  48. Jaggard KW, Qi AM, Ober ES (2010) Possible changes to arable crop yields by 2050. Phil Trans R Soc B: Biol Sci 365:2835–2851CrossRefGoogle Scholar
  49. Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nature Plants 1:15144PubMedCrossRefGoogle Scholar
  50. Jiang CJ, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sugano S, Takatsuji H (2009) Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant-Microbe Interact 22:820–829PubMedCrossRefGoogle Scholar
  51. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  53. Joung JK, Sander JD (2013) TALENs: awidely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55PubMedCrossRefGoogle Scholar
  54. Kanchiswamy CN, Malnoy M, Velasco R, Kim JS, Viola R (2015) Non-GMO genetically edited crop plants. Trends Biotechnol 33:489–491PubMedCrossRefGoogle Scholar
  55. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kraft K, Geuer S, Will AJ, Chan WL, Paliou C, Borschiwer M, Harabula I, Wittler L, Franke M, et al (2015) Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep 10:833–839CrossRefGoogle Scholar
  57. Lawrenson T, Shorinola O, Stacey N, Li C, Ostergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lee, HJ, Kweon J, Kim E, Kim S, Kim JS (2012) Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res 22:539–548PubMedPubMedCentralCrossRefGoogle Scholar
  59. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392PubMedCrossRefGoogle Scholar
  60. Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant 54:569–581CrossRefGoogle Scholar
  62. Liu Y, Yang H, Sakanishi A (2006) Ultrasound: mechanical gene transfer into plant cells by sonoporation. Biotechnol Adv 24:1–16PubMedCrossRefGoogle Scholar
  63. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, et al. (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610PubMedCrossRefGoogle Scholar
  65. Lor VS, Starker CG, Voytas DF, Weiss D, Olszewski NE (2014) Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol 166:1288–1291PubMedPubMedCentralCrossRefGoogle Scholar
  66. Luo S, Li J, Stoddard TJ, Baltes NJ, Demorest ZL, Clasen BM, Coffman A, Retterath A, Mathis L, Voytas DF, et al (2015) Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant 8:1425–1427PubMedCrossRefGoogle Scholar
  67. Ma S, Wang X, Liu Y, Gao J, Zhang S, Shi R, Chang J, Zhao P, Xia Q (2014) Multiplex genomic structure variation mediated by TALEN and ssODN. BMC Genomics 15:41PubMedPubMedCentralCrossRefGoogle Scholar
  68. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477PubMedCrossRefGoogle Scholar
  69. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedPubMedCentralCrossRefGoogle Scholar
  70. Martin-Ortigosa S, Valenstein JS, Lin VS, Trewyn BG, Wang K (2012) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22:3576–3582CrossRefGoogle Scholar
  71. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotech 25:778–785CrossRefGoogle Scholar
  72. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehar Y, Tanji M, Sato M, Nasu S, et al. (2002) Positional cloning of rice semi dwarfing gene, sd-1: “rice green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17PubMedCrossRefGoogle Scholar
  73. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T (2011). A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293PubMedPubMedCentralCrossRefGoogle Scholar
  75. Napier JA, Haslam RP, Beaudoin F, Cahoon EB (2014) Understanding and manipulating plant lipid composition: Metabolic engineering leads the way. Curr Opin Plant Biol 19:68–75PubMedPubMedCentralCrossRefGoogle Scholar
  76. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ottaviani D, LeCain M, Sheer D (2014) The role of microhomology in genomic structural variation. Trends Genet 30:85–94PubMedCrossRefGoogle Scholar
  78. Pacher M, Schmidt-Puchta W, Puchta H (2007) Two unlinked doublestrand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175:21–29PubMedPubMedCentralCrossRefGoogle Scholar
  79. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O et al (2008) Establishment of HIV-1 resistance in CD41 T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26:808–816PubMedPubMedCentralCrossRefGoogle Scholar
  80. Roth N, Klimesch J, Dukowic-Schulze S, Pacher M, Mannuss A, Puchta H (2012) The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells. Plant J 72:781–790PubMedCrossRefGoogle Scholar
  81. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JRJ (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Kakebayashi Y, Kojima M, Sakakibara H, et al (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774PubMedPubMedCentralCrossRefGoogle Scholar
  83. Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci USA 106:15594–15598PubMedPubMedCentralCrossRefGoogle Scholar
  84. Schomburg FM, Bizzell, CM, Lee DL, Zeevaart, JAD, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151-163PubMedPubMedCentralCrossRefGoogle Scholar
  85. Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13:791–800PubMedCrossRefGoogle Scholar
  86. Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski MC (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987PubMedPubMedCentralCrossRefGoogle Scholar
  87. Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG (2004) The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol 136:2900–2912PubMedPubMedCentralCrossRefGoogle Scholar
  88. Shu QY (2009) Turning plant mutation breeding into a new era: molecular mutation breeding. Induced plant mutations in the genomics era. Rome: FAO:425–427Google Scholar
  89. Shukla VK, Doyon, Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, et al. (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441PubMedCrossRefGoogle Scholar
  90. Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics 314:829Google Scholar
  91. Stoddard BL (2011) Homing endonucleases: From microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15PubMedPubMedCentralCrossRefGoogle Scholar
  92. Subburaj S, Cao S, Xia X, He Z (2016a) Phylogenetic analysis, lineage-specific expansion and functional divergence of seed dormancy 4-like genes in plants. PLoS ONE 11:e0153717PubMedPubMedCentralCrossRefGoogle Scholar
  93. Subburaj S, Chung SJ, Lee C, Ryu SM, Kim DH, Kim JS, Bae S, Lee GJ (2016b) Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep 35:1535–1544PubMedCrossRefGoogle Scholar
  94. Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, et al. (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA 107:5792–5797PubMedPubMedCentralCrossRefGoogle Scholar
  95. The Council of the European Communities (1990) Council Directive 90/220/ EEC of 23 April 1990 on the deliberate release into the environment of genetically modified organisms. Office J 117:15–27Google Scholar
  96. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445PubMedPubMedCentralCrossRefGoogle Scholar
  97. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651PubMedCrossRefGoogle Scholar
  98. van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022PubMedPubMedCentralCrossRefGoogle Scholar
  99. Walt Z (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature News 532:293CrossRefGoogle Scholar
  100. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11:e0154027PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951PubMedCrossRefGoogle Scholar
  102. Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285PubMedCrossRefGoogle Scholar
  103. White FF, Yang B (2009) Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction Plant Physiol 150:1677–1686PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wolt JD, Wang K, Yang B (2016) The regulatory status of genome-edited crops. Plant Biotechnol J 14:510–518PubMedCrossRefGoogle Scholar
  105. Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnol 33:1162–1164CrossRefGoogle Scholar
  106. Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383PubMedCrossRefGoogle Scholar
  107. Xiong JS, Ding J, Li Y (2016) Genome-editing technologies and their potential application in horticultural crop breeding. Hort Res 2:15019CrossRefGoogle Scholar
  108. Xu Y (2010) Molecular Plant Breeding. CABI.Google Scholar
  109. Yang Y, Wu Y, Pirrello J, Regad F, Bouzayen M, Deng W, Li Z (2010) Silencing Sl-EBF1 and Sl-EBF2 expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruit ripening in tomato. J Exp Bot 61:697–708PubMedCrossRefGoogle Scholar
  110. Younis A, Siddique MI, Kim CK, Lim KB (2014) RNA Interference (RNAi) Induced gene silencing: A promising approach of hi-tech plant breeding. Int J Biol Sci 10:1150–1158PubMedPubMedCentralCrossRefGoogle Scholar
  111. Zhou X, Jacobs TB, Xue LJ, Harding SC, Tsai CJ (2015) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy. New Phytol 208:298–301PubMedCrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science and Springer 2016

Authors and Affiliations

  • Saminathan Subburaj
    • 1
  • Luhua Tu
    • 1
  • Yong-Tae Jin
    • 1
  • Sangsu Bae
    • 2
  • Pil Joon Seo
    • 3
  • Yu Jin Jung
    • 4
  • Geung-Joo Lee
    • 1
  1. 1.Department of HorticultureChungnam National UniversityDaejeonSouth Korea
  2. 2.Department of ChemistryHanyang UniversitySeoulSouth Korea
  3. 3.Department of Biological SciencesSungkyunkwan UniversitySuwonSouth Korea
  4. 4.Department of HorticultureHankyong National UniversityAnsungSouth Korea

Personalised recommendations