Skip to main content

Genome Editing Technologies for Plant Improvement: Advances, Applications and Challenges

  • Chapter
  • First Online:
Omics Technologies for Sustainable Agriculture and Global Food Security Volume 1

Abstract

The current rate of genetic gains in crop improvement should rise to match growing need for sustainable food production and environmental safety. Recent years have seen genome editing being emerged as a promising tool to tailor a variety of traits that improve plant performance. In the context, sequence-specific nucleases like zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALENs) and more recently, clustered regularly interspaced short palindromic repeats (CRISPR/Cas) have enabled rapid and precise modification of the genomes. The CRISPR/Cas system has revolutionized targeted gene modification approaches owing of its capacity to produce allelic series with high precision in both domesticated and crop wild species. Recent examples demonstrating simultaneous mutagenesis of multiple genes lends credence to targeted genome editing for tailoring complex quantitative traits. In parallel, oligogenic traits like disease resistance can be improved by precise base editing by accurate protein remodelling. Notwithstanding encouraging results on plant genome editing, adoption of gene-edited plants remains a moot point. To realize immense potential of genome editing, emphasis should be given on resolving the technical and regulatory apprehensions associated with the adoption of gene-edited plant products. This article presents latest advances in techniques grouped under “genome editing”, with a brief discussion on the current status of genome edited plants. We also highlight current challenges that limit widespread applications of targeted genome modification in crop improvement for sustainable food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRISPR:

Clustered regularly interspaced short palindromic repeats

EU:

European union

FAO:

Food and agriculture organization

FTO:

Freedom to operate

GMO:

Genetically modified organism

IPR:

Intellectual property rights

NCA:

National competent authority

NPBTs:

New plant breeding techniques

NTWG:

New technique working group

SDN:

Site-directed nuclease

SG:

Synthetic genomics

TALEN:

Transcription activator-like effector nucleases

ZFN:

Zinc finger nuclease

References

  • Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J et al (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, Corbin DR, Miles RR et al (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11:1126–1134

    Article  CAS  PubMed  Google Scholar 

  • Ali Z, Mahas A, Mahfouz M (2018) CRISPR/Cas13 as a tool for RNA interference. Trends Plant Sci 23:374–378

    Article  CAS  PubMed  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP et al (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aman R, Ali Z, Butt H, Mahas M, Aljedaani F, Khan MZ, Ding S, Mahfouz M (2018) RNA virus interference via CRISPR/ Cas13a system in plants. Genome Biol 19:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:3864–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appels R, Barrero R, Bellgard M (2013) Advances in biotechnology and informatics to link variation in the genome to phenotypes in plants and animals. Funct Integr Genomics 13(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appels R, Nystrom J, Webster H, Keeble-gagnere G (2015) Discoveries and advances in plant and animal genomics. Funct Integr Genomics 15:121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–149

    Article  CAS  PubMed  Google Scholar 

  • Araki M, Nojima K, Ishii T (2014) Caution required for handling genome editing technology. Trends Biotechnol 32:234–237

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941

    Article  CAS  PubMed  Google Scholar 

  • Barrows G, Sexton S, Zilberman D (2014) Agricultural biotechnology: the promise and prospects of genetically modified crops. J Econ Perspect 28:99–120

    Article  Google Scholar 

  • Baysal C, Bortesi L, Zhu C et al (2016) CRISPR/Cas9 activity in the rice OsBEIIb gene does not induce off-target effects in the closely related paralog OsBEIIa. Mol Breed 36:1–11

    Article  CAS  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S et al (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belhaj K, Chaparro-garcia A, Kamoun S et al (2015) ScienceDirect editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  PubMed  Google Scholar 

  • Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21(1):289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161(3):1169–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binenbaum E, Nottenburg C, Pardey PG et al (2003) South-north trade, intellectual property jurisdictions, and freedom to operate in agricultural research on staple crops. Econ Dev Cult Change 51:309–335

    Article  Google Scholar 

  • Biswal AK, Mangrauthia SK, Reddy MR et al (2019) CRISPR mediated genome engineering to develop climate smart rice: challenges and opportunities. Semin Cell Dev Biol 96:100–106

    Article  CAS  PubMed  Google Scholar 

  • Bjørnstad Å (2016) “Do not privatize the giant” shoulders’: rethinking patents in plant breeding. Trends Biotechnol 34:609–617

    Article  PubMed  CAS  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846. https://doi.org/10.1126/science

  • Bonas U, Stall RE, Staskawicz B (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. Vesicatoria. Mol Gen Genet 218:127–136

    Article  CAS  PubMed  Google Scholar 

  • Brooks AK, Gaj T (2018) Innovations in CRISPR technology. Curr Opin Biotechnol 52:95–101

    Article  CAS  PubMed  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-Associated9 System1. Plant Physiol 166:1292–1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085

    Article  CAS  PubMed  Google Scholar 

  • Cai CQ, Doyon Y, Ainley WM et al (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69:699–709

    Article  CAS  PubMed  Google Scholar 

  • Callaway E (2018) CRISPR plants now subject to tough GM laws in European Union. Nature 560:16

    Article  CAS  PubMed  Google Scholar 

  • Carrera E, Ruiz-Rivero O, Peres LEP et al (2012) Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol 160:1581–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ et al (2016) Global conservation priorities for crop wild relatives. Nat Plants 2(4):16022

    Article  PubMed  Google Scholar 

  • Chen K, Gao C (2013) TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics 40:271–279

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Puttitanun T (2005) Intellectual property rights and innovation in developing countries. J Dev Econ 78:474–493

    Article  Google Scholar 

  • Chen L-Q, Qu X-Q, Hou B-H et al (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    Article  CAS  PubMed  Google Scholar 

  • Chi-Ham CL, Boettiger S, Figueroa-Balderas R et al (2012) An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation. Plant Biotechnol J 10:501–510

    Article  CAS  PubMed  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S et al (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • Collonnier C, Epert A, Mara K, Maclot F, Guyon-Debast A, Charlot F, White C, Schaefer D, Nogué F (2017) CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens. Plant Biotechnol J 15:122–131

    Article  CAS  PubMed  Google Scholar 

  • Cox DB, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin SJ, Zhang F, Sander JD et al (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Pater S, Neuteboom LW, Pinas JE et al (2009) ZFN-induced mutagenesis and gene- targeting in Arabidopsis through agrobacterium-mediated floral dip transformation. Plant Biotechnol J 7:821–835

    Article  PubMed  CAS  Google Scholar 

  • de Thomazella DPT, Brail Q, Dahlbeck, D, Staskawicz, BJ (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. bioRxiv 064824.

    Google Scholar 

  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz de la Garza R, Quinlivan EP, Klaus SMJ et al (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci U S A 101:13720–137205

    Article  PubMed  Google Scholar 

  • Directive 2001/18/EC (2001) Directive 2001/18/EC of the European Parliament and of the Council on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC. Official Journal of the European Union, L 106, 17.4.2001

    Google Scholar 

  • Directive 2009/41/EC (2009) Directive 2009/41/EC of the European Parliament and of the Council of 6 May 2009 on the contained use of genetically modified micro-organisms (Recast) (OJ L 125:75–97

    Google Scholar 

  • Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evenson RE (1999) Intellectual property rights, access to plant germplasm, and crop production scenarios in 2020. Crop Sci 30(6):1630–1635

    Article  Google Scholar 

  • Fang Y, Tyler BM (2016) Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol Plant Pathol 17:127–139

    Article  CAS  PubMed  Google Scholar 

  • Freedman DH (2013) The truth about genetically modified food. Sci Am 309:107–112

    Google Scholar 

  • Frison C, Dedeurwaerdere T, Halewood M (2010) Intellectual property and facilitated access to genetic resources under the international treaty on plant genetic resources for food and agriculture. Eur Intellect Prop Rev 32:1–8

    Google Scholar 

  • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  CAS  PubMed  Google Scholar 

  • Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilissen LJ, Bolhaar ST, Matos CI, Rouwendal GJ, Boone MJ, Krens FA et al (2005) Silencing the major apple allergen mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369

    Article  CAS  PubMed  Google Scholar 

  • Gilissen LJWJ, van der Meer IM, Smulders MJM (2014) Reducing the incidence of allergy and intolerance to cereals. J Cereal Sci 59:337–353

    Article  CAS  Google Scholar 

  • Glandorf B, de Loose M, Davies H (2011) Evaluation of changes in the genome of plants through application of new plant breeding techniques. Annex 15. In New plant breeding techniques. State-of-the-art and prospects for commercial development. JRC technical report EUR 24760 EN. (eds. Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E) pp 141–155

    Google Scholar 

  • Gold ER, Castle D, Cloutier LM et al (2002) Needed: models of biotechnology intellectual property. Trends Biotechnol 20:327–329

    Article  CAS  PubMed  Google Scholar 

  • Graff GD, Cullen SE, Bradford KJ et al (2003) The public – private structure of intellectual property ownership in agricultural biotechnology. Nat Biotechnol 21:989–995

    Article  CAS  PubMed  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Halterman D, Guenthner J, Collinge S, Butler N, Douches D (2016) Biotech potatoes in the 21st century: 20 years since the first biotech potato. Am J Potato Res 93:1–20

    Article  CAS  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA et al (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37(7):744–754. https://doi.org/10.1038/s41587-019-0152-9

    Article  CAS  PubMed  Google Scholar 

  • Hilioti Z, Ganopoulos I, Ajith S et al (2016) A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case. Plant Cell Rep 35:1–15

    Article  CAS  Google Scholar 

  • Hilton IB, D’Ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR/Cas9- based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holme IB, Wendt T, Gil-Humanes J, Deleuran LC, Starker CG, Voytas DF, Brinch-Pedersen H (2017) Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol Biol 95:111–121

    Article  CAS  PubMed  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Sang T, Zhao Q, Feng Q, Zhao Y et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Husbands AY, Chitwood DH, Plavskin Y, Timmermans MC (2009) Signals and prepatterns: new insights into organ polarity in plants. Genes Dev 23:1986–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Araki M (2016) Consumer acceptance of food crops developed by genome editing. Plant Cell Rep 35:1507–1518

    Article  CAS  PubMed  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Nishizawa-Yokoi A, Endo M et al (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucl Acids Res 41(20):e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2016) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657

    Article  CAS  Google Scholar 

  • Jin J, Huang W, Gao J, Yang J, Shi M, Zhu M, Luo D, Lin H (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40:1365–1369

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones HD (2015) Regulatory uncertainty over genome editing. Nat Plants 1:1–3

    Article  Google Scholar 

  • Jördens R (2005) Progress of plant variety protection based on the international convention for the protection of new varieties of plants (UPOV convention). World Pat Inf 27:232–243

    Article  Google Scholar 

  • Jung C, Capistrano-Gossmann G, Braatz J, Sashidhar N, Melzer S (2018) Recent developments in genome editing and applications in plant breeding. Plant Breed 137:1–9

    Article  Google Scholar 

  • Kalaitzandonakes N, Alston JM, Bradford KJ (2007) Compliance costs for regulatory approval of new biotech crops. Nat Biotechnol 25:509–551

    Article  CAS  PubMed  Google Scholar 

  • Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141:219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim ST, Kim SG, Kim JS (2015) Targeted genome editing for crop improvement. Plant Breed Biotechnol 3:283–290

    Article  Google Scholar 

  • Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET et al (2015) Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:823–826

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kumar R, Singh N, Mansoori A (2020). Regulatory framework and policy decisions for genome-edited crops. In: Concepts and strategies in plant sciences. Springer, Berlin, pp 193–201

    Google Scholar 

  • Kumar R, Sharma V, Suryavanshi SS, Ramrao DP, Veershetty V et al (2021) Understanding omics driven plant improvement and de-novo crop domestication: some examples. Front Genet https://doi.org/10.3389/fgene.2021.637141

  • Kuzma J, Kokotovich A (2011) Renegotiating GM crop regulation. EMBO Rep 12:883–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassoued R, Macall DM, Hesseln H, Phillips PW, Smyth SJ (2019) Benefits of genome-edited crops: expert opinion. Transgenic Res 28:247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Buanec B (2005) Plant genetic resources and freedom to operate. Euphytica 146:1–8

    Article  Google Scholar 

  • Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yue W, Zhenqi L, Yan S (2016) Genome editing and breeding technology and domestic and international development trend analysis. Biotechnol Business 4:37–42

    CAS  Google Scholar 

  • Li T, Yang X, Yu Y, Si X, Zhai X et al (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36:1160–1163. https://doi.org/10.1038/nbt.4273

    Article  CAS  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen LL (2017) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10:530–532

    Article  CAS  PubMed  Google Scholar 

  • Lor VS, Starker CG, Voytas DF et al (2014) Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol 166:1288–1291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu BR (2013) Introgression of transgenic crop alleles: its evolutionary impacts on conserving genetic diversity of crop wild relatives. J Syst Evol 51:245–262

    Article  Google Scholar 

  • Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by agrobacterium-mediated transformation. Plant Cell Rep 27:273–278

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Klocko AL, Dow M et al (2016) Low frequency of zinc-finger nuclease-induced mutagenesis in Populus. Mol Breed 36:121

    Article  CAS  Google Scholar 

  • Luby CH, Goldman IL (2016) Improving freedom to operate in carrot breeding through the development of eight open source composite populations of carrot (Daucus carota L. var. sativus). Sustainability 8:479

    Article  Google Scholar 

  • Luby CH, Kloppenburg J, Michaels TE, Goldman IL (2015) Enhancing freedom to operate for plant breeders and farmers through open source plant breeding. Crop Sci 55:2481–2488

    Article  CAS  Google Scholar 

  • Lucht JM (2015) Public acceptance of plant biotechnology and GM crops. Viruses 7:4254–4281

    Article  PubMed  PubMed Central  Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E (2011) New plant breeding techniques. In: state-of-the-art and prospects for commercial development. Luxembourg: Joint Research Centre-Institute for prospective technological studies, publications Office of the European Union; 2011. EUR 24760 EN, 1–220

    Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik KA, Zafar Y (2005) The international union for the protection of new varieties of plants (UPOV) recommendations on variety denominations. Asian Biotechnol Dev Rev 8:7–43

    Google Scholar 

  • Mao Y, Zhang Z, Feng Z et al (2016) Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J 14:519–532

    Article  CAS  PubMed  Google Scholar 

  • Matsoukas IG (2018) Commentary: RNA editing with CRISPR-Cas13. Front Genet 9:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao C, Xiao L, Hua K, Zou C, Zhao Y, Bressan RA, Zhu JK (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci U S A 115:6058–6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  • Nagamangala Kanchiswamy C, Sargent DJ, Velasco R et al (2015) Looking forward to genetically edited fruit crops. Trends Biotechnol 33:62–64

    Article  CAS  PubMed  Google Scholar 

  • Nogué F, Mara K, Collonnier C, Casacuberta JM (2016) Genome engineering and plant breeding: impact on trait discovery and development. Plant Cell Rep 35:1475–1486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nunes ACS, Kalkmann DC, Aragão FJ (2009) Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Transgenic Res 18:661–667

    Article  CAS  PubMed  Google Scholar 

  • Oczek JP (2000) In the aftermath of the “terminator” technology controversy: intellectual property protections for genetically engineered seeds and the right to save and replant seed. Bost Coll Law Rev 41:627

    Google Scholar 

  • Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci U S A 107:12034–12039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Watanabe T, Sugano SS et al (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmgren MG, Edenbrandt AK, Vedel SE et al (2015) Are we ready for back-to-nature crop breeding? Trends Plant Sci 20:155–164

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrott W (2018) Outlaws, old laws and no laws: the prospects of gene editing for agriculture in United States. Physiol Plant 164:406–411

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8:765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peer R, Rivlin G, Golobovitch S et al (2015) Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees. Planta 241:941–951

    Article  CAS  PubMed  Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker- resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 10:1011–1013

    Google Scholar 

  • Peterson BA, Haak DC, Nishimura MT et al (2016) Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS One 11:e0162169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. Vitr Cell Dev Biol - Plant 51:1–8

    Article  CAS  Google Scholar 

  • Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14

    CAS  PubMed  Google Scholar 

  • Qi Y, Li X, Zhang Y et al (2013) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3: Genes Genomes Genetics 3:1707–1715

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Quétier F (2016) The CRISPR-Cas9 technology: closer to the ultimate toolkit for targeted genome editing. Plant Sci 242:65–76

    Article  PubMed  CAS  Google Scholar 

  • Ramirez CL, Foley JE, Wright DA, Müller-Lerch F, Rahman SH, Cornu TI et al (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1(2):169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480

    Article  CAS  PubMed  Google Scholar 

  • Römer P, Hahn S, Jordan T et al (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645–648

    Article  PubMed  CAS  Google Scholar 

  • Sachs MM (2009) Cereal germplasm resources. Plant Physiol 149:148–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawai S, Ohyama K, Yasumoto S et al (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaart JG, Krens FA, Wolters AMA, Visser RGF (2010) Transformation methods for obtaining marker-free genetically modified plants. In: Stewart CN, Touraev A, Citovsky V, Tzfira T (eds) Plant transformation technologies. Wiley, Oxford, UK

    Google Scholar 

  • Schaart JG, van de Wiel CCM, Lotz LAP, Smulders MJM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–449

    Article  CAS  PubMed  Google Scholar 

  • Scheben A, Edwards D (2018) Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. Curr Opin Plant Biol 45:218–225

    Article  CAS  PubMed  Google Scholar 

  • Schiemann J, Hartung F, Kühn-institut J (2009) EU perspectives on new plant-breeding techniques. In: New DNA-editing approaches methods, applications and policy for agriculture. National Agricultural Biotechnology Council, New Delhi, India, pp 201–210

    Google Scholar 

  • Schneider K, Schiermeyer A, Dolls A et al (2016) Targeted gene exchange in plant cells mediated by a zinc finger nuclease double cut. Plant Biotechnol J 14:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J et al (2013) Targeted geome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:684–686

    Article  CAS  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cassystem. Nat Protoc 9:2395–2410

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K et al (2017) Targeted base editing in rice and tomato using a CRISPRCas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Chen J, Solnica-Krezel L (2014) Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development 141:3807–3818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmakov S, Abudayyeh OO, Makarova KS et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Smulders MJM, Jouanin AA, Schaart JG, Visser RGF, Cockram J, Leigh F et al (2015) Development of wheat varieties with reduced contents of celiac-immunogenic epitopes through conventional and GM strategies. In: Koehler P (ed) Proceedings of the 28th meeting of the working group on prolamin analysis and toxicity. Verlag Deutsche Forschungsanstalt für Leben-smittelchemie (DFA), Düsseldorf, pp 47–56

    Google Scholar 

  • Song G, Jia M, Chen K et al (2016) CRISPR/Cas9: a powerful tool for crop genome editing. Crop J 4:75–82

    Article  Google Scholar 

  • Söllü C, Pars K, Cornu TI, Thibodeau-Beganny S et al (2010) Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion. Nucleic Acids Res 38(22):8269–8276. https://doi.org/10.1093/nar/gkq720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprink T, Eriksson D, Schiemann J, Hartung F (2016) Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep 35:1493–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart CN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nature 4:806–817

    CAS  Google Scholar 

  • Storozhenko S, De Brouwer V, Volckaert M et al (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 25:1277–1279

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhang X, Wu C et al (2016) Engineering herbicide resistant rice plants through CRISPR/Cas9-mediated homologous recombination of the acetolactate synthase. Plant Physiol 170:1689–1699

    CAS  Google Scholar 

  • Szczepek M, Brondani V, Büchel J et al (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793

    Article  CAS  PubMed  Google Scholar 

  • Tamás C, Kisgyörgy BN, Rakszegi M et al (2009) Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep 28:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Tan L, Li X, Liu F, Sun X, Li C et al (2008) Control of a key transition from prostate to erect growth in rice domestication. Nat Genet 40:1360–1364

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y (2012) Attitude gaps between conventional plant breeding crops and genetically modified crops, and psychological models determining the acceptance of the two crops. J Risk Res 16:69–80

    Article  Google Scholar 

  • Tomlinson L, Yang Y, Emenecker R, Smoker M, Taylor J, Perkins S, Smith J, MacLean D, Olszewski NE, Jones JDG (2019) Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant Biotechnol J 17:132–140

    Article  CAS  PubMed  Google Scholar 

  • Townsend J, Wright D, Winfrey RJ et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai SQ, Zheng Z, Nguyen NT et al (2015) GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA guided genome editing for target gene mutations in wheat. G3 3:2233–2238

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Tuinen A, Peters AHLJ, Kendrick RE et al (1999) Characterisation of the procera mutant of tomato and the interaction of gibberellins with end-of-day far-red light treatments. Physiol Plant 106:121–128

    Article  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Bansal KC, Aggarwal PK et al (2011) Agricultural biotechnology for crop improvement in a variable climate: Hope or hype? Trends Plant Sci 16:363–371

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Singh VK, Kumar A, Powell W, Sorrells ME (2018) Can genomics deliver climate-change ready crops? Curr Opin Plant Biol 45:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • von Wettberg EJ, Chang PL, Başdemir F, Carrasquila-Garcia N, Korbu LB et al (2018) Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nat Commun 9:649

    Article  CAS  Google Scholar 

  • Waltz E (2018) With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol 36:6–7

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Lu Y, Botella J, Mao Y, Hua K, Zhu JK (2017) Gene targeting by homology- directed repair in Rice using a Geminivirus-based CRISPR/Cas9 system. Mol Plant 10:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Warschefsky E, Varma Penmetsa R, Cook DR, Von Wettberg EJB (2014) Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am J Bot 101:1791–1800

    Article  PubMed  Google Scholar 

  • Wendt T, Holm PB, Starker CG et al (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13:59–69

    Article  CAS  Google Scholar 

  • Wolt JD, Wang K, Sashital D, Lawrence-Dill CJ (2016) Achieving plant CRISPR targeting that limits off-target effects. Plant Genome 9(3):1–8. https://doi.org/10.3835/plantgenome2016.05.0047

    Article  CAS  Google Scholar 

  • Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J et al (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. The Plant J 44:693–705

    Article  CAS  PubMed  Google Scholar 

  • Wyman C, Kanaar R (2006) DNA double-strand break repair: all's well that ends well. Annu Rev Genet 40:363–383

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Horticu Res 2:15019

    Article  CAS  Google Scholar 

  • Zaidi SS, Mansoor S, Ali Z, Tashkandi M, Mahfouz MM (2016) Engineering plants for geminivirus resistance with CRISPR/Cas9 system. Trends Plant Sci 21:279–281

    Article  CAS  PubMed  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  CAS  PubMed  Google Scholar 

  • Zanga D, Capell T, Zhu C et al (2016) Freedom-to-operate analysis of a transgenic multivitamin corn variety. Plant Biotechnol J 14:1225–1240

    Article  PubMed  Google Scholar 

  • Zentella R, Zhang Z-L, Park M et al (2007) Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107:12028–12033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Shan Q, Wang Y et al (2013) Rapid and efficient gene modification in rice and brachypodium using TALENs. Mol Plant 6:1365–1368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Zhang J, Wei P et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acid Res 42:10903–10914. https://doi.org/10.1093/nar/gku806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong Y, Wang YP, Li C, Zhang R, Chen KL, Ran YD, Qiu JL, Wang DW, Gao CX (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440

    Article  CAS  PubMed  Google Scholar 

  • Zu Y, Tong X, Wang Z et al (2013) TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10:329–331

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

RK acknowledges Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for the financial support. A.K sincerely thank University Grants Commission (UGC) start-up grant (No.F.30-392/2017 (BSR) and Madhya Pradesh Council of Science and Technology (Endt. No. 3879/CST/R&D/BioSci/2018) for the funding to the laboratory.

Authors Contribution

RK, NRN and AK conceived the manuscript. AM and TKT gave the technical support during the MS preparation. All authors read and approve the final MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Nizampatnam, N.R., Alam, M., Thakur, T.K., Kumar, A. (2021). Genome Editing Technologies for Plant Improvement: Advances, Applications and Challenges. In: Kumar, A., Kumar, R., Shukla, P., Pandey, M.K. (eds) Omics Technologies for Sustainable Agriculture and Global Food Security Volume 1. Springer, Singapore. https://doi.org/10.1007/978-981-16-0831-5_10

Download citation

Publish with us

Policies and ethics