Skip to main content
Log in

Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Conventional liquid electrolytes based sodium metal batteries suffer from severe safety hazards owing to electrolyte leakage, inflammability and dendritic sodium deposition. Herein, we report a flame-retardant quasi-solid polymer electrolyte with poly(methyl vinyl ether-alt-maleic anhydride) (P(MVE-alt-MA)) as host, bacterial cellulose (BC) as reinforcement, and triethyl phosphate/vinylene carbonate/sodium perchlorate (TEP/VC/NaClO4) as plasticizer for highly safe sodium metal batteries. The as-obtained quasi-solid polymer electrolyte exhibits superior flame retardancy (self-extinguish within 1 s), complete non-leakage property and wide electrochemical windows (4.4 V). More importantly, Na3V2(PO4)3/Na metal batteries using such polymer electrolyte delivers superior long-term cycling stability (84.4% capacity retention after 1000 cycles) which is significantly better than that (only 2% after 240 cycles) of liquid electrolyte. In addition, this flame-retardant quasi-solid polymer electrolyte provides favorable cycle performance (80.2% capacity retention after 70 cycles at 50 °C and 84.8% capacity retention after 50 cycles at −10 °C) for Na3V2(PO4)3/Na metal batteries. And this battery also displayed a normal charge/discharge property even at −15 °C. These fascinating cycle properties are mainly ascribed to the effective protective layers formed on Na3V2(PO4)3 cathode and sodium metal anode. More thorough investigation elucidates that such flame-retardant quasi-solid polymer electrolyte plays a multifunctional role in the advanced sodium metal batteries: (1) Being involved in the formation of a favorable cathode electrolyte interface (CEI) to inhibit the dissolution of vanadium and maintain the structure integrity of the Na3V2(PO4)3; (2) Participating in building a stable solid electrolyte interface (SEI) to suppress the growth of Na dendrites; (3) Integrating flame-retardance into polymer sodium batteries to enhance flame-resistance, eliminate electrolyte leakage, and thus improve safety of sodium batteries. Based on these results, we further assembled Na3V2(PO4)3/MoS2 pouch cell which can withstand harsh conditions (bended or cut off a corner), confirming the obtained polymer electrolyte with superior non-leakage property. In all, these outstanding characteristics would endow this flame-retardant quasi-solid polymer electrolyte a very promising candidate for highly-safe sodium metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hueso, K. B.; Palomares, V.; Armand, M.; Rojo, T. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 2017, 10, 4082–4114.

    Article  Google Scholar 

  2. Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodiumion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

    Article  Google Scholar 

  3. Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130–151.

    Article  Google Scholar 

  4. Huang, Y. Y.; Zheng, Y. H.; Li, X.; Adams, F.; Luo, W.; Huang, Y. H.; Hu, L. B. Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 2018, 3, 1604–1612.

    Article  Google Scholar 

  5. Cao, Y. L.; Xiao, L. F.; Wang, W.; Choi, D.; Nie, Z. M.; Yu, J. G.; Saraf, L. V.; Yang, Z. G.; Liu, J. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater. 2011, 23, 3155–3160.

    Article  Google Scholar 

  6. Qian, J. F.; Wu, C.; Cao, Y. L.; Ma, Z. F.; Huang, Y. H.; Ai, X. P.; Yang, H. X. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 2018, 8, 1702619.

    Article  Google Scholar 

  7. Li, Y. M.; Xu, S. Y.; Wu, X. Y.; Yu, J. Z.; Wang, Y. S.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Amorphous monodispersed hard carbon microspherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 71–77.

    Article  Google Scholar 

  8. Li, Q.; Liu, Z. G.; Zheng, F.; Liu, R.; Lee, J.; Xu, G. L.; Zhong, G. M.; Hou, X.; Fu, R. Q.; Chen, Z. H. et al. Identifying the structural evolution of the sodium ion battery Na2FePO4F cathode. Angew. Chem., Int. Ed. 2018, 57, 11918–11923.

    Article  Google Scholar 

  9. Chen, S. Q.; Wu, C.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700431.

    Article  Google Scholar 

  10. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

    Article  Google Scholar 

  11. Eshetu, G. G.; Grugeon, S.; Kim, H.; Jeong, S.; Wu, L. M.; Gachot, G.; Laruelle, S.; Armand, M.; Passerini, S. Comprehensive insights into the reactivity of electrolytes based on sodium ions. ChemSusChem. 2016, 9, 462–471.

    Article  Google Scholar 

  12. Xia, X.; Obrovac, M. N.; Dahn, J. R. Comparison of the reactivity of NaxC6 and LixC6 with non-aqueous solvents and electrolytes. Electrochem. Solid-State Lett. 2011, 14, A130–A133.

    Article  Google Scholar 

  13. Xia, X.; Dahn, J. R. Study of the reactivity of Na/hard carbon with different solvents and electrolytes. J. Electrochem. Soc. 2012, 159, A515–A519.

    Article  Google Scholar 

  14. Matsumoto, K.; Hosokawa, T.; Nohira, T.; Hagiwara, R.; Fukunaga, A.; Numata, K.; Itani, E.; Sakai, S.; Nitta, K.; Inazawa, S. The Na[FSA]-[C2C1im][FSA] (C2C1im+: 1-ethyl-3-methylimidazolium and FSA: Bis(fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries. J. Power Sources 2014, 265, 36–39.

    Article  Google Scholar 

  15. Wongittharom, N.; Wang, C. H.; Wang, Y. C.; Yang, C. H.; Chang, J. K. Ionic liquid electrolytes with various sodium solutes for rechargeable Na/NaFePO4 batteries operated at elevated temperatures. ACS Appl. Mater. Interfaces 2014, 6, 17564–17570.

    Article  Google Scholar 

  16. Zhang, Z. Z.; Zhang, Q. Q.; Ren, C.; Luo, F.; Ma, Q.; Hu, Y. S.; Zhou, Z. B.; Li, H.; Huang, X. J.; Chen, L. Q. A ceramic/polymer composite solid electrolyte for sodium batteries. J. Mater. Chem. A 2016, 4, 15823–15828.

    Article  Google Scholar 

  17. Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203–220.

    Article  Google Scholar 

  18. Chandrasekaran, R.; Mangani, I. R.; Vasanthi, R.; Selladurai, S. Ionic conductivity and battery characteristic studies on PEO + NaClO3 polymer electrolyte. Ionics 2001, 7, 88–93.

    Article  Google Scholar 

  19. Bhide, A.; Hariharan, K. Composite polymer electrolyte based on (PEO)6: NaPO3 dispersed with BaTiO3. Polym. Int. 2008, 57, 523–529.

    Article  Google Scholar 

  20. Reddy, C. V. S.; Jin, A. P.; Zhu, Q. Y.; Mai, L. Q.; Chen, W. Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications. Eur. Phys. J. E. 2006, 19, 471–476.

    Article  Google Scholar 

  21. Feng, J. K.; An, Y. L.; Ci, L. J.; Xiong, S. L. Nonflammable electrolyte for safer non-aqueous sodium batteries. J. Mater. Chem. A 2015, 3, 14539–14544.

    Article  Google Scholar 

  22. Liu, X. W.; Jiang, X. Y.; Zeng, Z. Q.; Ai, X. P.; Yang. H. X.; Zhong, F. P.; Xia, Y. Y.; Cao, Y. L. High capacity and cycle-stable hard carbon anode for nonflammable sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 38141–38150.

    Article  Google Scholar 

  23. Zeng, Z. Q.; Jiang, X. Y.; Li, R.; Yuan, D. D.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte. Adv. Sci. 2016, 3, 1600066.

    Article  Google Scholar 

  24. Wang, J. H.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22–29.

    Article  Google Scholar 

  25. Wei, S. Y.; Choudhury, S.; Xu, J.; Nath, P.; Tu, Z. Y.; Archer, L. A. Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv. Mater. 2017, 29, 1605512.

    Article  Google Scholar 

  26. Monroe, C.; Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 2005, 152, A396–A404.

    Article  Google Scholar 

  27. Tikekar, M. D.; Archer, L. A.; Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2016, 2, e1600320.

    Article  Google Scholar 

  28. Tu, Z. Y.; Kambe, Y.; Lu, Y. Y.; Archer, L. A. Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 2014, 4, 1300654.

    Article  Google Scholar 

  29. Mercan, E.; Sert, D.; Akın, N. Effect of high-pressure homogenisation on viscosity, particle size and microbiological characteristics of skim and whole milk concentrates. Int. Dairy J. 2018, 87, 93–99.

    Article  Google Scholar 

  30. Liu, C. B.; Gao, J. M.; Tang, Y. B.; Chen, X. M. Preparation and characterization of gypsum-based materials used for 3D robocasting. J. Mater. Sci. 2018, 53, 16415–16422.

    Article  Google Scholar 

  31. Fei, G. Q.; Zhang, Y.; Wang, X.; Li, X. R.; Wang, H. H. Effects of continuous phase and crosslinking agent on the rheological behaviors and properties of cationic poly(urethane-acrylate) emulsifier-free microemulsions. J. Nanosci. Nanotechnol. 2018, 18, 8419–8425.

    Article  Google Scholar 

  32. Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacín, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572–8583.

    Article  Google Scholar 

  33. Zimmerman, A. H. Self-discharge losses in lithium-ion cells. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 19–24.

    Article  Google Scholar 

  34. Seong, W. M.; Park, K. Y.; Lee, M. H.; Moon, S.; Oh, K.; Park, H.; Lee, S.; Kang, K. Abnormal self-discharge in lithium-ion batteries. Energy Environ. Sci. 2018, 11, 970–978.

    Article  Google Scholar 

  35. Shen, W.; Li, H.; Wang, C.; Li, Z. H.; Xu, Q. J.; Liu, H. M.; Wang, Y. G. Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 15190–15201.

    Article  Google Scholar 

  36. Ponrouch, A.; Dedryvère, R.; Monti, D.; Demet, A. E.; Mba, J. M. A.; Croguennec, L.; Masquelier, C.; Johansson, P.; Palacín M. R. Towards high energy density sodium ion batteries through electrolyte optimization. Energy Environ. Sci. 2013, 6, 2361–2369.

    Article  Google Scholar 

  37. Dong, T. T.; Zhang, J. J.; Xu, G. J.; Chai, J. C.; Du, H. P.; Wang, L. L.; Wen, H. J.; Zang, X.; Du, A. B.; Jia, Q. M. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 2018, 11, 1197–1203.

    Article  Google Scholar 

  38. Evenson, S. A.; Badya, J. P. S. Solventless attachment of long-chain molecules to poly(ethylene-alt-maleic anhydride) copolymer surfaces. J. Phys. Chem. B 1998, 102, 5500–5502.

    Article  Google Scholar 

  39. Klee, R.; Wiatrowski, M.; Aragón, M. J.; Lavela, P.; Ortiz, G. F.; Alcántara, R.; Tirado, J. L. Improved surface stability of C + MxOy@Na3V2(PO4)3 prepared by ultrasonic method as cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 1471–1478.

    Article  Google Scholar 

  40. Nacimiento, F.; Cabello, M.; Alcántara, R.; Lavela, P.; Tirado, J. L. NASICON-type Na3V2(PO4)3 as a new positive electrode material for rechargeable aluminium battery. Electrochim. Acta 2018, 260, 798–804.

    Article  Google Scholar 

  41. Aragón, M. J.; Lavela, P.; Ortiz, G. F.; Alcántara, R.; Tirado, J. L. Induced rate performance enhancement in off-stoichiometric Na3+3xV2−x(PO4)3 with potential applicability as the cathode for sodium-ion batteries. Chem. - Eur. J. 2017, 23, 7345–7352.

    Article  Google Scholar 

  42. Hu, Z. L.; Zhang, S.; Dong, S. M.; Li, Q.; Cui, G. L.; Chen, L. Q. Self-stabilized solid electrolyte interface on a host-free Li-metal anode toward high areal capacity and rate utilization. Chem. Mater. 2018, 30, 4039–4047.

    Article  Google Scholar 

  43. Chai, J. C.; Liu, Z. H.; Ma, J.; Wang, J.; Liu, X. C.; Liu, H. S.; Zhang, J. J.; Cui, G. L.; Chen, L. Q. In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci. 2017, 4, 1600377.

    Article  Google Scholar 

  44. Zhao, H.; Zhou, X.; Park, S. J.; Shi, F. F.; Fu, Y. B.; Ling, M.; Yuca, N.; Battaglia, V.; Liu, G. A polymerized vinylene carbonate anode binder enhances performance of lithium-ion batteries. J. Power Sources 2014, 263, 288–295.

    Article  Google Scholar 

  45. Zhang, B.; Metzger, M.; Solchenbach, S.; Payne, M.; Meini, S.; Gasteiger, H. A.; Garsuch, A.; Lucht, B. L. Role of 1,3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation. J. Phys. Chem. C 2015, 119, 11337–11348.

    Article  Google Scholar 

Download references

Acknowledgements

This original research was financially supported by the National Natural Science Foundation of China (Nos. 51703236 and U1706229), the National Science Fund for Distinguished Young Scholars (No. 51625204), the National Key Research and Development Program of China (No. 2018YFB0104300), Think-Tank Mutual Fund of Qingdao Energy Storage Industry Scientific Research, Key Scientific and Technological Innovation Project of Shandong (No. 2017CXZC0505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Zhang or Guanglei Cui.

Electronic supplementary material

12274_2019_2369_MOESM1_ESM.pdf

Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhang, M., Chen, Z. et al. Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability. Nano Res. 12, 2230–2237 (2019). https://doi.org/10.1007/s12274-019-2369-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2369-9

Keywords

Navigation