Advertisement

Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability

  • Jinfeng Yang
  • Min Zhang
  • Zheng Chen
  • Xiaofan Du
  • Suqi Huang
  • Ben Tang
  • Tiantian Dong
  • Han Wu
  • Zhe Yu
  • Jianjun ZhangEmail author
  • Guanglei CuiEmail author
Research Article
  • 42 Downloads

Abstract

Conventional liquid electrolytes based sodium metal batteries suffer from severe safety hazards owing to electrolyte leakage, inflammability and dendritic sodium deposition. Herein, we report a flame-retardant quasi-solid polymer electrolyte with poly(methyl vinyl ether-alt-maleic anhydride) (P(MVE-alt-MA)) as host, bacterial cellulose (BC) as reinforcement, and triethyl phosphate/vinylene carbonate/sodium perchlorate (TEP/VC/NaClO4) as plasticizer for highly safe sodium metal batteries. The as-obtained quasi-solid polymer electrolyte exhibits superior flame retardancy (self-extinguish within 1 s), complete non-leakage property and wide electrochemical windows (4.4 V). More importantly, Na3V2(PO4)3/Na metal batteries using such polymer electrolyte delivers superior long-term cycling stability (84.4% capacity retention after 1000 cycles) which is significantly better than that (only 2% after 240 cycles) of liquid electrolyte. In addition, this flame-retardant quasi-solid polymer electrolyte provides favorable cycle performance (80.2% capacity retention after 70 cycles at 50 °C and 84.8% capacity retention after 50 cycles at −10 °C) for Na3V2(PO4)3/Na metal batteries. And this battery also displayed a normal charge/discharge property even at −15 °C. These fascinating cycle properties are mainly ascribed to the effective protective layers formed on Na3V2(PO4)3 cathode and sodium metal anode. More thorough investigation elucidates that such flame-retardant quasi-solid polymer electrolyte plays a multifunctional role in the advanced sodium metal batteries: (1) Being involved in the formation of a favorable cathode electrolyte interface (CEI) to inhibit the dissolution of vanadium and maintain the structure integrity of the Na3V2(PO4)3; (2) Participating in building a stable solid electrolyte interface (SEI) to suppress the growth of Na dendrites; (3) Integrating flame-retardance into polymer sodium batteries to enhance flame-resistance, eliminate electrolyte leakage, and thus improve safety of sodium batteries. Based on these results, we further assembled Na3V2(PO4)3/MoS2 pouch cell which can withstand harsh conditions (bended or cut off a corner), confirming the obtained polymer electrolyte with superior non-leakage property. In all, these outstanding characteristics would endow this flame-retardant quasi-solid polymer electrolyte a very promising candidate for highly-safe sodium metal batteries.

Keywords

flame-retardant quasi-solid polymer electrolyte highly safe characteristic sodium metal batteries long-term cycling stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This original research was financially supported by the National Natural Science Foundation of China (Nos. 51703236 and U1706229), the National Science Fund for Distinguished Young Scholars (No. 51625204), the National Key Research and Development Program of China (No. 2018YFB0104300), Think-Tank Mutual Fund of Qingdao Energy Storage Industry Scientific Research, Key Scientific and Technological Innovation Project of Shandong (No. 2017CXZC0505).

Supplementary material

12274_2019_2369_MOESM1_ESM.pdf (6.2 mb)
Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability

References

  1. [1]
    Hueso, K. B.; Palomares, V.; Armand, M.; Rojo, T. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 2017, 10, 4082–4114.CrossRefGoogle Scholar
  2. [2]
    Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodiumion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.CrossRefGoogle Scholar
  3. [3]
    Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130–151.CrossRefGoogle Scholar
  4. [4]
    Huang, Y. Y.; Zheng, Y. H.; Li, X.; Adams, F.; Luo, W.; Huang, Y. H.; Hu, L. B. Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 2018, 3, 1604–1612.CrossRefGoogle Scholar
  5. [5]
    Cao, Y. L.; Xiao, L. F.; Wang, W.; Choi, D.; Nie, Z. M.; Yu, J. G.; Saraf, L. V.; Yang, Z. G.; Liu, J. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater. 2011, 23, 3155–3160.CrossRefGoogle Scholar
  6. [6]
    Qian, J. F.; Wu, C.; Cao, Y. L.; Ma, Z. F.; Huang, Y. H.; Ai, X. P.; Yang, H. X. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 2018, 8, 1702619.CrossRefGoogle Scholar
  7. [7]
    Li, Y. M.; Xu, S. Y.; Wu, X. Y.; Yu, J. Z.; Wang, Y. S.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Amorphous monodispersed hard carbon microspherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 71–77.CrossRefGoogle Scholar
  8. [8]
    Li, Q.; Liu, Z. G.; Zheng, F.; Liu, R.; Lee, J.; Xu, G. L.; Zhong, G. M.; Hou, X.; Fu, R. Q.; Chen, Z. H. et al. Identifying the structural evolution of the sodium ion battery Na2FePO4F cathode. Angew. Chem., Int. Ed. 2018, 57, 11918–11923.CrossRefGoogle Scholar
  9. [9]
    Chen, S. Q.; Wu, C.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700431.CrossRefGoogle Scholar
  10. [10]
    Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.CrossRefGoogle Scholar
  11. [11]
    Eshetu, G. G.; Grugeon, S.; Kim, H.; Jeong, S.; Wu, L. M.; Gachot, G.; Laruelle, S.; Armand, M.; Passerini, S. Comprehensive insights into the reactivity of electrolytes based on sodium ions. ChemSusChem. 2016, 9, 462–471.CrossRefGoogle Scholar
  12. [12]
    Xia, X.; Obrovac, M. N.; Dahn, J. R. Comparison of the reactivity of NaxC6 and LixC6 with non-aqueous solvents and electrolytes. Electrochem. Solid-State Lett. 2011, 14, A130–A133.CrossRefGoogle Scholar
  13. [13]
    Xia, X.; Dahn, J. R. Study of the reactivity of Na/hard carbon with different solvents and electrolytes. J. Electrochem. Soc. 2012, 159, A515–A519.CrossRefGoogle Scholar
  14. [14]
    Matsumoto, K.; Hosokawa, T.; Nohira, T.; Hagiwara, R.; Fukunaga, A.; Numata, K.; Itani, E.; Sakai, S.; Nitta, K.; Inazawa, S. The Na[FSA]-[C2C1im][FSA] (C2C1im+: 1-ethyl-3-methylimidazolium and FSA: Bis(fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries. J. Power Sources 2014, 265, 36–39.CrossRefGoogle Scholar
  15. [15]
    Wongittharom, N.; Wang, C. H.; Wang, Y. C.; Yang, C. H.; Chang, J. K. Ionic liquid electrolytes with various sodium solutes for rechargeable Na/NaFePO4 batteries operated at elevated temperatures. ACS Appl. Mater. Interfaces 2014, 6, 17564–17570.CrossRefGoogle Scholar
  16. [16]
    Zhang, Z. Z.; Zhang, Q. Q.; Ren, C.; Luo, F.; Ma, Q.; Hu, Y. S.; Zhou, Z. B.; Li, H.; Huang, X. J.; Chen, L. Q. A ceramic/polymer composite solid electrolyte for sodium batteries. J. Mater. Chem. A 2016, 4, 15823–15828.CrossRefGoogle Scholar
  17. [17]
    Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203–220.CrossRefGoogle Scholar
  18. [18]
    Chandrasekaran, R.; Mangani, I. R.; Vasanthi, R.; Selladurai, S. Ionic conductivity and battery characteristic studies on PEO + NaClO3 polymer electrolyte. Ionics 2001, 7, 88–93.CrossRefGoogle Scholar
  19. [19]
    Bhide, A.; Hariharan, K. Composite polymer electrolyte based on (PEO)6: NaPO3 dispersed with BaTiO3. Polym. Int. 2008, 57, 523–529.CrossRefGoogle Scholar
  20. [20]
    Reddy, C. V. S.; Jin, A. P.; Zhu, Q. Y.; Mai, L. Q.; Chen, W. Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications. Eur. Phys. J. E. 2006, 19, 471–476.CrossRefGoogle Scholar
  21. [21]
    Feng, J. K.; An, Y. L.; Ci, L. J.; Xiong, S. L. Nonflammable electrolyte for safer non-aqueous sodium batteries. J. Mater. Chem. A 2015, 3, 14539–14544.CrossRefGoogle Scholar
  22. [22]
    Liu, X. W.; Jiang, X. Y.; Zeng, Z. Q.; Ai, X. P.; Yang. H. X.; Zhong, F. P.; Xia, Y. Y.; Cao, Y. L. High capacity and cycle-stable hard carbon anode for nonflammable sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 38141–38150.CrossRefGoogle Scholar
  23. [23]
    Zeng, Z. Q.; Jiang, X. Y.; Li, R.; Yuan, D. D.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte. Adv. Sci. 2016, 3, 1600066.CrossRefGoogle Scholar
  24. [24]
    Wang, J. H.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22–29.CrossRefGoogle Scholar
  25. [25]
    Wei, S. Y.; Choudhury, S.; Xu, J.; Nath, P.; Tu, Z. Y.; Archer, L. A. Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv. Mater. 2017, 29, 1605512.CrossRefGoogle Scholar
  26. [26]
    Monroe, C.; Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 2005, 152, A396–A404.CrossRefGoogle Scholar
  27. [27]
    Tikekar, M. D.; Archer, L. A.; Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2016, 2, e1600320.CrossRefGoogle Scholar
  28. [28]
    Tu, Z. Y.; Kambe, Y.; Lu, Y. Y.; Archer, L. A. Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 2014, 4, 1300654.CrossRefGoogle Scholar
  29. [29]
    Mercan, E.; Sert, D.; Akın, N. Effect of high-pressure homogenisation on viscosity, particle size and microbiological characteristics of skim and whole milk concentrates. Int. Dairy J. 2018, 87, 93–99.CrossRefGoogle Scholar
  30. [30]
    Liu, C. B.; Gao, J. M.; Tang, Y. B.; Chen, X. M. Preparation and characterization of gypsum-based materials used for 3D robocasting. J. Mater. Sci. 2018, 53, 16415–16422.CrossRefGoogle Scholar
  31. [31]
    Fei, G. Q.; Zhang, Y.; Wang, X.; Li, X. R.; Wang, H. H. Effects of continuous phase and crosslinking agent on the rheological behaviors and properties of cationic poly(urethane-acrylate) emulsifier-free microemulsions. J. Nanosci. Nanotechnol. 2018, 18, 8419–8425.CrossRefGoogle Scholar
  32. [32]
    Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacín, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572–8583.CrossRefGoogle Scholar
  33. [33]
    Zimmerman, A. H. Self-discharge losses in lithium-ion cells. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 19–24.CrossRefGoogle Scholar
  34. [34]
    Seong, W. M.; Park, K. Y.; Lee, M. H.; Moon, S.; Oh, K.; Park, H.; Lee, S.; Kang, K. Abnormal self-discharge in lithium-ion batteries. Energy Environ. Sci. 2018, 11, 970–978.CrossRefGoogle Scholar
  35. [35]
    Shen, W.; Li, H.; Wang, C.; Li, Z. H.; Xu, Q. J.; Liu, H. M.; Wang, Y. G. Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 15190–15201.CrossRefGoogle Scholar
  36. [36]
    Ponrouch, A.; Dedryvère, R.; Monti, D.; Demet, A. E.; Mba, J. M. A.; Croguennec, L.; Masquelier, C.; Johansson, P.; Palacín M. R. Towards high energy density sodium ion batteries through electrolyte optimization. Energy Environ. Sci. 2013, 6, 2361–2369.CrossRefGoogle Scholar
  37. [37]
    Dong, T. T.; Zhang, J. J.; Xu, G. J.; Chai, J. C.; Du, H. P.; Wang, L. L.; Wen, H. J.; Zang, X.; Du, A. B.; Jia, Q. M. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 2018, 11, 1197–1203.CrossRefGoogle Scholar
  38. [38]
    Evenson, S. A.; Badya, J. P. S. Solventless attachment of long-chain molecules to poly(ethylene-alt-maleic anhydride) copolymer surfaces. J. Phys. Chem. B 1998, 102, 5500–5502.CrossRefGoogle Scholar
  39. [39]
    Klee, R.; Wiatrowski, M.; Aragón, M. J.; Lavela, P.; Ortiz, G. F.; Alcántara, R.; Tirado, J. L. Improved surface stability of C + MxOy@Na3V2(PO4)3 prepared by ultrasonic method as cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 1471–1478.CrossRefGoogle Scholar
  40. [40]
    Nacimiento, F.; Cabello, M.; Alcántara, R.; Lavela, P.; Tirado, J. L. NASICON-type Na3V2(PO4)3 as a new positive electrode material for rechargeable aluminium battery. Electrochim. Acta 2018, 260, 798–804.CrossRefGoogle Scholar
  41. [41]
    Aragón, M. J.; Lavela, P.; Ortiz, G. F.; Alcántara, R.; Tirado, J. L. Induced rate performance enhancement in off-stoichiometric Na3+3xV2−x(PO4)3 with potential applicability as the cathode for sodium-ion batteries. Chem. - Eur. J. 2017, 23, 7345–7352.CrossRefGoogle Scholar
  42. [42]
    Hu, Z. L.; Zhang, S.; Dong, S. M.; Li, Q.; Cui, G. L.; Chen, L. Q. Self-stabilized solid electrolyte interface on a host-free Li-metal anode toward high areal capacity and rate utilization. Chem. Mater. 2018, 30, 4039–4047.CrossRefGoogle Scholar
  43. [43]
    Chai, J. C.; Liu, Z. H.; Ma, J.; Wang, J.; Liu, X. C.; Liu, H. S.; Zhang, J. J.; Cui, G. L.; Chen, L. Q. In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci. 2017, 4, 1600377.CrossRefGoogle Scholar
  44. [44]
    Zhao, H.; Zhou, X.; Park, S. J.; Shi, F. F.; Fu, Y. B.; Ling, M.; Yuca, N.; Battaglia, V.; Liu, G. A polymerized vinylene carbonate anode binder enhances performance of lithium-ion batteries. J. Power Sources 2014, 263, 288–295.CrossRefGoogle Scholar
  45. [45]
    Zhang, B.; Metzger, M.; Solchenbach, S.; Payne, M.; Meini, S.; Gasteiger, H. A.; Garsuch, A.; Lucht, B. L. Role of 1,3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation. J. Phys. Chem. C 2015, 119, 11337–11348.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jinfeng Yang
    • 1
    • 2
  • Min Zhang
    • 1
    • 3
  • Zheng Chen
    • 1
  • Xiaofan Du
    • 1
  • Suqi Huang
    • 1
    • 3
  • Ben Tang
    • 1
    • 2
  • Tiantian Dong
    • 1
  • Han Wu
    • 1
  • Zhe Yu
    • 1
  • Jianjun Zhang
    • 1
    Email author
  • Guanglei Cui
    • 1
    Email author
  1. 1.Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.School of Material Science and EngineeringQingdao UniversityQingdaoChina

Personalised recommendations