Skip to main content
Log in

Triglyme-based electrolyte for sodium-ion and sodium-sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, we investigate a lowly flammable electrolyte formed by dissolving sodium trifluoromethanesulfonate (NaCF3SO3) salt in triethylene glycol dimethyl ether (TREGDME) solvent as suitable medium for application in Na-ion and Na/S cells. The study, performed by using various electrochemical techniques, including impedance spectroscopy, voltammetry, and galvanostatic cycling, indicates for the solution high ionic conductivity and sodium transference number (t+), suitable stability window, very low electrode/electrolyte interphase resistance and sodium stripping/deposition overvoltage. Direct exposition to flame reveals the remarkable safety of the solution due to missing fire evolution under the adopted experimental setup. The solution is further investigated in sodium cells using various electrodes, i.e., mesocarbon microbeads (MCMBs), tin-carbon (Sn–C), and sulfur-multiwalled carbon nanotubes (S-MWCNTs). The results show suitable cycling performances, with stable reversible capacity ranging from 90 mAh g−1 for MCMB to 130 mAh g−1 for Sn–C, and to 250 mAh g−1 for S-MWCNTs, thus suggesting the electrolyte as promising candidate for application in sustainable sodium-ion and sodium-sulfur batteries.

A versatile solution! Lowly flammable electrolyte solution based on triglyme shows very promising electrochemical properties for application in new-generation Na-ion and Na–S cells. The electrochemical study indicates fast ion transport, suitable stability, and remarkably low resistance at the electrode interphase. The applicability is demonstrated by tests in Na cells using graphite and tin-carbon anodes, as well as sulfur-multiwalled carbon nanotube cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chemie Int Ed 54:3432–3448. https://doi.org/10.1002/anie.201410376

    Article  CAS  Google Scholar 

  2. Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614. https://doi.org/10.1039/C6CS00776G

    Article  CAS  PubMed  Google Scholar 

  3. Hasa I, Hassoun J, Passerini S (2017) Nanostructured Na-ion and Li-ion anodes for battery application: a comparative overview. Nano Res 10:3942–3969. https://doi.org/10.1007/s12274-017-1513-7

    Article  CAS  Google Scholar 

  4. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224. https://doi.org/10.1016/j.jpowsour.2012.02.038

    Article  CAS  Google Scholar 

  5. Che H, Chen S, Xie Y, Wang H, Amine K, Liao X-Z, Ma Z-F (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10:1075–1101. https://doi.org/10.1039/C7EE00524E

    Article  CAS  Google Scholar 

  6. Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y (2011) Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Interfaces 3:4165–4168. https://doi.org/10.1021/am200973k

    Article  CAS  PubMed  Google Scholar 

  7. Islam M, Jeong M-G, Hwang J-Y, Oh I-H, Sun Y-K, Jung H-G (2017) Self-assembled nickel-cobalt oxide microspheres from rods with enhanced electrochemical performance for sodium ion battery. Electrochim Acta 258:220–227. https://doi.org/10.1016/j.electacta.2017.10.114

    Article  CAS  Google Scholar 

  8. Ming J, Ming H, Yang W, Kwak W-J, Park J-B, Zheng J, Sun Y-K (2015) A sustainable iron-based sodium ion battery of porous carbon–Fe3O4/Na2FeP2O7 with high performance. RSC Adv 5:8793–8800. https://doi.org/10.1039/C4RA14733B

    Article  CAS  Google Scholar 

  9. Zhang X, Fan C, Xiao P, Han S (2016) Effect of vinylene carbonate on electrochemical performance and surface chemistry of hard carbon electrodes in lithium ion cells operated at different temperatures. Electrochim Acta 222:221–231 https://doi.org/10.1016/j.electacta.2016.10.149

    Article  CAS  Google Scholar 

  10. Song S, Duong HM, Korsunsky AM, Hu N, Lu L (2016) A Na+ superionic conductor for room-temperature sodium batteries. Sci Rep 6:32330 https://doi.org/10.1038/srep32330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song S, Kotobuki M, Zheng F, Xu C, Savilov SV, Hu N, Lu L, Wang Y, Li WDZ (2017) A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. J Mater Chem A 5:6424–6431 https://doi.org/10.1039/C6TA11165C

    Article  CAS  Google Scholar 

  12. Serra Moreno J, Armand M, Berman MB, Greenbaum SG, Scrosati B, Panero S (2014) Composite PEOn:NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization. J Power Sources 248:695–702 https://doi.org/10.1016/j.jpowsour.2013.09.137

    Article  CAS  Google Scholar 

  13. Yang Q, Zhang Z, Sun X-G, Hu Y-S, Xing H, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064 https://doi.org/10.1039/C7CS00464H

    Article  CAS  PubMed  Google Scholar 

  14. Park C-W, Ryu H-S, Kim K-W, Ahn J-H, Lee J-Y, Ahn H-J (2007) Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte. J Power Sources 165:450–454 https://doi.org/10.1016/j.jpowsour.2006.11.083

    Article  CAS  Google Scholar 

  15. Di Lecce D, Sharova V, Jeong S, Moretti A, Passerini S (2018) A multiple electrolyte concept for lithium-metal batteries. Solid State Ionics 316:66–74 https://doi.org/10.1016/j.ssi.2017.12.012

    Article  CAS  Google Scholar 

  16. Agostini M, Ulissi U, Di Lecce D, Ahiara Y, Ito S, Hassoun J (2015) A lithium-ion battery based on an ionic liquid electrolyte, tin-narbon nanostructured anode, and Li2O-ZrO2-coated Li[Ni0.8Co0.15Al0.05]O2 cathode. Energy Technol 3:632–637 https://doi.org/10.1002/ente.201402226

    Article  CAS  Google Scholar 

  17. Carbone L, Munoz S, Gobet M, Devany M, Greenbaum S, Hassoun J (2017) Characteristics of glyme electrolytes for sodium battery: nuclear magnetic resonance and electrochemical study. Electrochim Acta 231:223–229 https://doi.org/10.1016/j.electacta.2017.02.007

    Article  CAS  Google Scholar 

  18. Kim H, Hong J, Park Y-U, Kim J, Hwang I, Kang K (2015) Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater 25:534–541 https://doi.org/10.1002/adfm.201402984

    Article  CAS  Google Scholar 

  19. Dutta PK, Mitra S (2017) Efficient sodium storage: experimental study of anode with additive-free ether-based electrolyte system. J Power Sources 349:152–162 https://doi.org/10.1016/j.jpowsour.2017.03.031

    Article  CAS  Google Scholar 

  20. Das SK, Jache B, Lahon H, Bender CL, Janek J, Adelhelm P (2016) Graphene mediated improved sodium storage in nanocrystalline anatase TiO2 for sodium ion batteries with ether electrolyte. Chem Commun 52:1428–1431 https://doi.org/10.1039/C5CC09656A

    Article  CAS  Google Scholar 

  21. Zhu Y-E, Yang L, Zhou X, Li F, Wei J, Zhou Z (2017) Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. J Mater Chem A 5:9528–9532 https://doi.org/10.1039/C7TA02515G

    Article  CAS  Google Scholar 

  22. Jache B, Binder JO, Abe T, Adelhelm P (2016) A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries. Phys Chem Chem Phys 18:14299–14316 https://doi.org/10.1039/C6CP00651E

    Article  CAS  PubMed  Google Scholar 

  23. Guo C, Zhang K, Zhao Q, Peia L, Chen J (2015) High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. Chem Commun 51:10244–10247 https://doi.org/10.1039/C5CC02251G

    Article  CAS  Google Scholar 

  24. Yu X, Manthiram A (2014) Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries. ChemElectroChem 1:1275–1280 https://doi.org/10.1002/celc.201402112

    Article  CAS  Google Scholar 

  25. Ryu H, Kim T, Kim K, Ahn J-H, Nam T, Wang G, Ahn H-J (2011) Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. J Power Sources 196:5186–5190 https://doi.org/10.1016/j.jpowsour.2011.01.109

    Article  CAS  Google Scholar 

  26. Wei S, Xu S, Agrawral A, Choudhury S, Lu Y, Tu Z, Ma L, Archer LA (2016) A stable room-temperature sodium–sulfur battery. Nat Commun 7:11722 https://doi.org/10.1038/ncomms11722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Yan D, Lu T, Qin W, Yao Y, Pan L (2017) Significantly improved sodium-ion storage performance of CuS nanosheets anchored into reduced graphene oxide with ether-based electrolyte. ACS Appl Mater Interfaces 9:2309–2316 https://doi.org/10.1021/acsami.6b12529

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J, Wang D-W, Lv W, Zhang S, Liang Q, Zheng D, Kanga F, Yang Q-H (2017) Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci 10:370–376 https://doi.org/10.1039/C6EE03367A

    Article  CAS  Google Scholar 

  29. Benítez A, Di Lecce D, Caballero Á, Morales J, Rodríguez-Castellón E, Hassoun J (2018) Lithium sulfur battery exploiting material design and electrolyte chemistry: 3D graphene framework and diglyme solution. J Power Sources 397:102–112 https://doi.org/10.1016/j.jpowsour.2018.07.002

    Article  CAS  Google Scholar 

  30. Di Lecce D, Carbone L, Gancitano V, Hassoun J (2016) Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes. J Power Sources 334:146–153 https://doi.org/10.1016/j.jpowsour.2016.09.164

    Article  CAS  Google Scholar 

  31. Carbone L, Moro PT, Gobet M, Munoz S, Devany M, Greenbaum SG, Hassoun J (2018) Enhanced lithium oxygen battery using a glyme electrolyte and carbon nanotubes. ACS Appl Mater Interfaces 10:16367–16375 https://doi.org/10.1021/acsami.7b19544

    Article  CAS  PubMed  Google Scholar 

  32. Hasa I, Dou X, Buchholz D, Shao-Horn Y, Hassoun J, Passerini S, Scrosati B (2016) A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J Power Sources 310:26–31 https://doi.org/10.1016/j.jpowsour.2016.01.082

    Article  CAS  Google Scholar 

  33. Elia GA, Hasa I, Hassoun J (2016) Characterization of a reversible, low-polarization sodium-oxygen battery. Electrochim Acta 191:516–520 https://doi.org/10.1016/j.electacta.2016.01.062

    Article  CAS  Google Scholar 

  34. Lee D-J, Park J-W, Hasa I, Sun Y-K, Scrosati B, Hassoun J (2013) Alternative materials for sodium ion–sulphur batteries. J Mater Chem A 1:5256 https://doi.org/10.1039/c3ta10241f

    Article  CAS  Google Scholar 

  35. Hess S, Wohlfahrt-Mehrens M, Wachtler M (2015) Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. J Electrochem Soc 162:A3084–A3097 https://doi.org/10.1149/2.0121502jes

    Article  CAS  Google Scholar 

  36. Tobishima S, Morimoto H, Aoki M, Saito Y, Inose T, Fukumoto T, Kuryu T (2004) Glyme-based nonaqueous electrolytes for rechargeable lithium cells. Electrochim Acta 49:979–987 https://doi.org/10.1016/j.electacta.2003.10.009

    Article  CAS  Google Scholar 

  37. Carbone L, Gobet M, Peng J, Devany M, Scrosati B, Greenbaum S, Hassoun J (2015) Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery. J Power Sources 299:460–464 https://doi.org/10.1016/j.jpowsour.2015.08.090

    Article  CAS  Google Scholar 

  38. Carbone L, Gobet M, Peng J, Devany M, Scrosati B, Greenbaum S, Hassoun J (2015) Comparative study of ether-based electrolytes for application in lithium-sulfur battery. ACS Appl Mater Interfaces 7:13859–13865 https://doi.org/10.1021/acsami.5b02160

    Article  CAS  PubMed  Google Scholar 

  39. Di Lecce D, Fasciani C, Scrosati B, Hassoun J (2015) A gel–polymer Sn–C/LiMn0.5Fe0.5PO4 battery using a fluorine-free salt. ACS Appl Mater Interfaces 7:21198–21207 https://doi.org/10.1021/acsami.5b05179

    Article  CAS  PubMed  Google Scholar 

  40. Carbone L, Di Lecce D, Gobet M, Munoz S, Devany M, Greenbaum S, Hassoun S (2017) Relevant features of a triethylene glycol dimethyl ether-based electrolyte for application in lithium battery. ACS Appl Mater Interfaces 9:17085–17095 https://doi.org/10.1021/acsami.7b03235

    Article  CAS  PubMed  Google Scholar 

  41. Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114:11503–11618 https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  42. Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124 https://doi.org/10.1021/cr00083a006

    Article  CAS  Google Scholar 

  43. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328. https://doi.org/10.1016/0032-3861(87)90394-6

    Article  CAS  Google Scholar 

  44. Lee D-J, Agostini M, Park J-W, Sun Y-K, Hassoun J, Scrosati B (2013) Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. ChemSusChem 6:2245–2248 https://doi.org/10.1002/cssc.201300313

    Article  CAS  PubMed  Google Scholar 

  45. Elia GA, Park J, Sun Y, Scrosati B, Hassoun J (2014) Role of the lithium salt in the performance of lithium-oxygen batteries: a comparative study. ChemElectroChem 1:47–50 https://doi.org/10.1002/celc.201300160

    Article  CAS  Google Scholar 

  46. Eshetu GG, Diemant T, Hekmatfar M, Grugeon S, Behm RJ, Laruelle S, Armand M, Passerini S (2019) Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. Nano Energy 55:327–340 https://doi.org/10.1016/j.nanoen.2018.10.040

    Article  CAS  Google Scholar 

  47. Zhang J, Wang D-W, Lv W, Qin L, Niu S, Zhang S, Cao T, Kang F, Yang Q-H (2018) Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges. Adv Energy Mater 8:1801361 https://doi.org/10.1002/aenm.201801361

    Article  CAS  Google Scholar 

  48. Bridel J-S, Grugeon S, Laruelle S, Hassoun J, Reale P, Scrosati B, Tarascon J-M (2010) Decomposition of ethylene carbonate on electrodeposited metal thin film anode. J Power Sources 195:2036–2043 https://doi.org/10.1016/j.jpowsour.2009.10.038

    Article  CAS  Google Scholar 

  49. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763. https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  50. Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chemie Int Ed 53:10169–10173 https://doi.org/10.1002/anie.201403734

    Article  CAS  Google Scholar 

  51. Hasa I, Passerini S, Hassoun J (2015) A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. RSC Adv 5:48928–48934 https://doi.org/10.1039/C5RA06336A

    Article  CAS  Google Scholar 

  52. Zhang Z, Zhao J, Wang H, Gong Y, Xu JL (2018) Facile synthesis of Sb/CNT nanocomposite as anode material for sodium-ion batteries. Funct Mater Lett 11:1850004 https://doi.org/10.1142/S1793604718500042

    Article  CAS  Google Scholar 

  53. Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D (2014) Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano 8:4415–4429 https://doi.org/10.1021/nn4063598

    Article  CAS  PubMed  Google Scholar 

  54. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy. Environ Sci 4:3287 https://doi.org/10.1039/c1ee01388b

    CAS  Google Scholar 

  55. Fan X-Y, Liu P, Wang S, Han J, Ni K, Gou L, Xu L, Li D, Lin C, Li R (2018) Electrochemical construction and sodium storage performance of three-dimensional porous self-supported MoS2 electrodes. Funct Mater Lett 11:1850050 https://doi.org/10.1142/S1793604718500509

    Article  CAS  Google Scholar 

  56. Liu J, Dai J, Huang L, Fu B (2018) Flexible and binder-free electrospun Co3O4 nanoparticles/carbon composite nanofiber mats as negative electrodes for sodium-ion batteries. Funct Mater Lett 11:1850072 https://doi.org/10.1142/S1793604718500728

    Article  CAS  Google Scholar 

  57. Hassoun J, Derrien G, Panero S, Scrosati B (2008) A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater 20:3169–3175 https://doi.org/10.1002/adma.200702928

    Article  CAS  Google Scholar 

  58. Elia GA, Nobili F, Tossici R, Marassi R, Savoini A, Panero S, Hassoun J (2015) Nanostructured tin-carbon/ LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature. J Power Sources 275:227–233 https://doi.org/10.1016/j.jpowsour.2014.10.144

    Article  CAS  Google Scholar 

  59. Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336–2340 https://doi.org/10.1002/adma.200700748

    Article  CAS  Google Scholar 

  60. Di Lecce D, Brutti S, Panero S, Hassoun J (2015) A new Sn-C/LiFe0.1Co0.9PO4 full lithium-ion cell with ionic liquid-based electrolyte. Mater Lett 139:329–332 https://doi.org/10.1016/j.matlet.2014.10.089

    Article  CAS  Google Scholar 

  61. Di Lecce D, Verrelli R, Hassoun J (2016) New lithium ion batteries exploiting conversion/alloying anode and LiFe0.25Mn0.5Co0.25PO4 olivine cathode. Electrochim Acta 220:384–390 https://doi.org/10.1016/j.electacta.2016.10.067

    Article  CAS  Google Scholar 

  62. Elia GA, Ulissi U, Jeong S, Passerini S, Hassoun J (2016) Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. Energy Environ Sci 9:3210–3220 https://doi.org/10.1039/C6EE01295G

    Article  CAS  Google Scholar 

  63. Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angew Chemie Int Ed 49:2371–2374 https://doi.org/10.1002/anie.200907324

    Article  CAS  Google Scholar 

  64. Hasa I, Hassoun J, Sun Y-K, Scrosati B (2014) Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode. ChemPhysChem 15:2152–2155 https://doi.org/10.1002/cphc.201400088

    Article  CAS  PubMed  Google Scholar 

  65. Oh S-M, Myung S-T, Jang M-W, Scrosati B, Hassoun J, Sun Y-K (2013) An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. Phys Chem Chem Phys 15:3827–3833 https://doi.org/10.1039/c3cp00070b

    Article  CAS  PubMed  Google Scholar 

  66. Zhang B, Rousse G, Foix D, Dugas R, Dalla Corte DA, Tarascon J-M (2016) Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries. Adv Mater 28:9824–9830 https://doi.org/10.1002/adma.201603212

    Article  CAS  PubMed  Google Scholar 

  67. Lim D-H, Agostini M, Ahn J-H, Matic A (2018) An electrospun nanofiber membrane as gel-based electrolyte for room-temperature sodium-sulfur batteries. Energy Technol 6:1214–1219 https://doi.org/10.1002/ente.201800170

    Article  CAS  Google Scholar 

  68. Kumar D, Rajouria SK, Kuhar SB, Kanchan DK (2017) Progress and prospects of sodium-sulfur batteries: a review. Solid State Ionics 312:8–16 https://doi.org/10.1016/j.ssi.2017.10.004

    Article  CAS  Google Scholar 

  69. Kim I, Park J-YJ-W, Kim C, Park J-W, Ahn J-P, Ahn J-H, Kim K-W, Ahn H-J (2016) Sodium polysulfides during charge/discharge of the room-temperature Na/S battery using TEGDME electrolyte. J Electrochem Soc 163:A611–A616 https://doi.org/10.1149/2.0201605jes

    Article  CAS  Google Scholar 

  70. Carbone L, Greenbaum SG, Hassoun J (2017) Lithium sulfur and lithium oxygen batteries: new frontiers of sustainable energy storage. Sustain Energy Fuels 1:228–247 https://doi.org/10.1039/C6SE00124F

    Article  CAS  Google Scholar 

  71. Wang H, Wang C, Matios E, Li W (2018) Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew Chemie Int Ed 57:7734–7737 https://doi.org/10.1002/anie.201801818

    Article  CAS  Google Scholar 

  72. Shin HD, Agostini M, Belharouak I, Hassoun J, Sun Y-K (2016) High-power lithium polysulfide-carbon battery. Carbon N Y 96:125–130 https://doi.org/10.1016/j.carbon.2015.09.034

    Article  CAS  Google Scholar 

  73. Benítez A, Di Lecce D, Elia GA, Caballero Á, Morales J, Hassoun J (2018) A lithium-ion battery using a 3 D-array nanostructured graphene–sulfur cathode and a silicon oxide-based anode. ChemSusChem 11:1512–1520 https://doi.org/10.1002/cssc.201800242

    Article  CAS  PubMed  Google Scholar 

  74. Di Lecce D, Marangon V, Benítez A, Caballero Á, Morales J, Rodríguez-Castellón E, Hassoun J (2019) High capacity semi-liquid lithium sulfur cells with enhanced reversibility for application in new-generation energy storage systems. J Power Sources 412:575–585 https://doi.org/10.1016/j.jpowsour.2018.11.068

    Article  CAS  Google Scholar 

  75. Benítez A, Caballero Á, Rodríguez-Castellón E, Morales J, Hassoun J (2018) The role of current collector in enabling the high performance of Li/S battery. ChemistrySelect 3:10371–10377 https://doi.org/10.1002/slct.201802529

    Article  CAS  Google Scholar 

  76. Carbone L, Peng J, Agostini M, Gobet M, Devany M, Scrosati B, Greenbaum S, Hassoun J (2017) Carbon composites for a high-energy lithium-sulfur battey with a glyme-based electrolyte. ChemElectroChem 4:209–215 https://doi.org/10.1002/celc.201600586

    Article  CAS  Google Scholar 

  77. Di Lecce D, Verrelli R, Hassoun J (2017) Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chem 19:3442–3467 https://doi.org/10.1039/C7GC01328K

    Article  Google Scholar 

  78. Di Lecce D, Verrelli R, Campanella D, Marangon V, Hassoun J (2017) A new CuO-Fe2O3-mesocarbon microbeads conversion anode in a high-performance lithium-ion battery with a Li1.35Ni0.48Fe0.1Mn1.72O4 spinel cathode. ChemSusChem 10:1607–1615 https://doi.org/10.1002/cssc.201601638

    Article  CAS  PubMed  Google Scholar 

  79. Carbone L, Coneglian T, Gobet M, Munoz S, Devany M, Greenbaum S, Hassoun J (2018) A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. J Power Sources 377:26–35 https://doi.org/10.1016/j.jpowsour.2017.11.079

    Article  CAS  Google Scholar 

Download references

Funding

The work was funded by the grant “Fondo di Ateneo per la Ricerca Locale (FAR) 2017”, University of Ferrara, and performed within the collaboration project “Accordo di Collaborazione Quadro 2015” between University of Ferrara (Department of Chemical and Pharmaceutical Sciences) and Sapienza University of Rome (Department of Chemistry).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jusef Hassoun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Lecce, D., Minnetti, L., Polidoro, D. et al. Triglyme-based electrolyte for sodium-ion and sodium-sulfur batteries. Ionics 25, 3129–3141 (2019). https://doi.org/10.1007/s11581-019-02878-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02878-w

Keywords

Navigation