Skip to main content

Advertisement

Log in

Preparation and characterization of gypsum-based materials used for 3D robocasting

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, gypsum-based materials (GM) comprising mainly α-hemihydrate gypsum, polycarboxylate, hydroxypropyl methyl cellulose and starch ether were prepared and used for 3D robocasting (3DR). The setting time and rheological properties of the GM slurry and the physical properties of the GM sample, including bulk density, porosity and mechanical strength, were investigated. The results indicate that the GM slurry exhibits an obvious shear thinning behavior and a good shape fidelity. The measured dynamic yield stress, final viscosity and initial storage modulus of the GM slurry are as high as 420.73 Pa, 7.29 Pa s and 273.86 kPa, respectively. Meanwhile, the GM slurry presents an adequate initial setting time of 68 min compared with a printing time of 14 min. In addition, the GM sample prepared by 3DR has a high compressive strength of 64.96 ± 5.98 MPa and a bending strength of 15.24 ± 1.58 MPa. These mechanical strengths are comparable with those of the GM and pure gypsum plaster sample prepared by traditional molding. Generally, the 3DR of GM is a promising method to improve the mechanical strength of printed gypsum products and presents great application prospects in the building of complex large-scale structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bobby SS, Singamneni S (2014) Influence of moisture in the gypsum moulds made by 3D Printing. Procedia Eng 97:1618–1625

    Article  CAS  Google Scholar 

  2. Selvaraj SB, Singamneni S (2016) Pre-moisturized β-hemihydrate for 3D printed molds. Mater Manuf Process 31:1102–1112

    Article  CAS  Google Scholar 

  3. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16:496–504

    Article  CAS  Google Scholar 

  4. Lowmunkong R, Sohmura T, Suzuki Y et al (2009) Fabrication of freeform bone-filling calcium phosphate ceramics by gypsum 3d printing method. J Biomed Mater Res B Appl Biomater 90B:531–539

    Article  CAS  Google Scholar 

  5. Inzana JA, Olvera D, Fuller SM et al (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034

    Article  CAS  Google Scholar 

  6. Brunello G, Sivolella S, Meneghello R et al (2016) Powder-based 3D printing for bone tissue engineering. Biotechnol Adv 34:740–753

    Article  CAS  Google Scholar 

  7. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765

    Article  CAS  Google Scholar 

  8. Farzadi A, Solati-Hashjin M, Asadi-Eydivand M et al (2014) Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering. PLoS ONE 9:e108252

    Article  Google Scholar 

  9. Eydivand MA, Hashjin MS, Farzad A (2016) Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes. Robot Comput Integr Manuf 37:57–67

    Article  Google Scholar 

  10. Zhou ZX, Buchanan F, Mitchell C et al (2014) Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng C 38:1–10

    Article  CAS  Google Scholar 

  11. Christ S, Schnabel M, Vorndran E et al (2015) Fiber reinforcement during 3D printing. Mater Lett 139:165–168

    Article  CAS  Google Scholar 

  12. Suwanprateeb J, Suvannapruk W, Wasoontararat K (2010) Low temperature preparation of calcium phosphate structure via phosphorization of 3D-printed calcium sulfate hemihydrate based material. J Mater Sci Mater Med 21:419–429

    Article  CAS  Google Scholar 

  13. Aranda B, Guillou O, Lanos C et al (2016) Effect of multiphasic structure of binder particles on the mechanical properties of a gypsum-based material. Constr Build Mater 102:175–181

    Article  CAS  Google Scholar 

  14. Guan BH, Ye QQ, Zhang JL et al (2010) Interaction between α-calcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process. Cem Concr Res 40:253–259

    Article  CAS  Google Scholar 

  15. Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Mater Today 7:32–39

    Article  CAS  Google Scholar 

  16. Ren XY, Shao HP, Lin T et al (2016) 3D gel-printing—an additive manufacturing method for producing complex shape parts. Mater Des 101:80–87

    Article  CAS  Google Scholar 

  17. Schlordt T, Schwanke S, Keppner F et al (2013) Robocasting of alumina hollow filament lattice structures. J Eur Ceram Soc 33:3243–3248

    Article  CAS  Google Scholar 

  18. Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83:2341–2359

    Article  CAS  Google Scholar 

  19. Hambach M, Volkmer D (2017) Properties of 3D-printed fiber-reinforced Portland cement paste. Cem Concr Compos 79:62–70

    Article  CAS  Google Scholar 

  20. Papo A (1988) Rheological models for gypsum plaster pastes. Rheol Acta 27:320–325

    Article  CAS  Google Scholar 

  21. Adrien J, Meille S, Tadier S et al (2016) In-situ X-ray tomographic monitoring of gypsum plaster setting. Cem Concr Res 82:107–116

    Article  CAS  Google Scholar 

  22. Eve S, Gomina M, Jernot JP et al (2007) Microstructure characterization of polyamide fibre/latex-filled plaster composites. J Eur Ceram Soc 27:3517–3525

    Article  CAS  Google Scholar 

  23. Han D, Lee GC, Yoon SJ et al (2015) Viscosity influence on rising behavior of model air bubbles in fresh mortar. Constr Build Mater 76:10–15

    Article  Google Scholar 

  24. Ratha S, Ouchia M, Puthipad N et al (2017) Improving the stability of entrained air in self-compacting concrete byoptimizing the mix viscosity and air entraining agent dosage. Constr Build Mater 148:531–537

    Article  Google Scholar 

  25. Lanzón M, García-Ruiz PA (2012) Effect of citric acid on setting inhibition and mechanical properties of gypsum building plasters. Constr Build Mater 28:506–511

    Article  Google Scholar 

  26. Schlordt T, Keppner F, Travitzky N et al (2012) Robocasting of alumina lattice truss structures. J Ceram Sci Technol 3:81–88

    Google Scholar 

  27. Peng JH, Qu JD, Zhang JX et al (2005) Adsorption characteristics of water-reducing agents on gypsum surface and its effect on the rheology of gypsum plaster. Cem Concr Res 35:527–531

    Article  CAS  Google Scholar 

  28. Izaguirre A, Lanas J, Álvarez JI (2010) Behaviour of a starch as a viscosity modifier for aerial lime-based mortars. Carbohyd Polym 80:222–228

    Article  CAS  Google Scholar 

  29. Bülichen D, Plank J (2013) Water retention capacity and working mechanism of methyl hydroxypropyl cellulose (MHPC) in gypsum plaster—which impact has sulfate? Cem Concr Res 46:66–72

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Foundation of China National Nature Science (51578141), 973 Program (2015CB655102) and Project (201693) of new wall materials special fund of Jiangsu Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Gao, J., Tang, Y. et al. Preparation and characterization of gypsum-based materials used for 3D robocasting. J Mater Sci 53, 16415–16422 (2018). https://doi.org/10.1007/s10853-018-2800-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2800-8

Keywords

Navigation