Journal of Cell Communication and Signaling

, Volume 9, Issue 3, pp 267–278 | Cite as

The role of CCN family genes in haematological malignancies

  • J. E. Wells
  • M. Howlett
  • L. C. Cheung
  • Ursula R. Kees


Haematological malignancies, although a broad range of specific disease types, continue to show considerable overlap in classification, and patients are treated using similar chemotherapy regimes. In this review we look at the role of the CCN family of matricellular proteins and indicate their role in nine haematological malignancies including both myeloid and lymphoid neoplasms. The potential for further haematological neoplasms with CCN family associations is argued by summarising the demonstrated role of CCN family genes in the differentiation of haematopoietic stem cells (HSC) and mesenchymal stem cells. The expanding field of knowledge encompassing CCN family genes and cancers of the HSC-lineage highlights the importance of extracellular matrix-interactions in both normal physiology and tumorigenesis of the blood, bone marrow and lymph nodes.


CCN Cancer Haematopoietic stem cell (HSC) Mesenchymal stem cell (MSC) 



Acute lymphoblastic leukaemia


Acute myeloid leukaemia


Bcl-2-associated X protein


B-cell lymphoma- extra large


Bone morphogenic protein


Chronic myeloid leukaemia


Cyclin independent kinase inhibitor protein 27


Common lymphoid progenitors


Common myeloid progenitor


Connective tissue growth factor


Cysteine-rich 61


Diffuse large B-cell lymphoma


Delta like kinase


Extracellular matrix


Enzyme-linked immunosorbent assays


Fibroblast-specific protein 1


Haematopoietic stem cell


Insulin-like growth factor-binding proteins


Low-density lipoprotein receptor-related protein


Monitoring of Cancer Incidence in Japan


Matrix metalloproteinase


Multipotent progenitor


Mesenchymal stem cell


Nephroblastoma overexpressed


Red blood cell


Surveillance, epidemiology and end results program (SEER)


Transforming growth factor β


TNF-related apoptosis-inducing ligand 1


Tropomyosin receptor kinase A


Thrombospondin type 1 repeat


Vascular endothelial growth factor


Von Willebrand factor C


Wnt-inducible-secreted protein 1


Wnt-inducible-secreted protein 2


Wnt-inducible-secreted protein 3


  1. Ayala F, Dewar R, Kieran M, Kalluri R (2009) Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia 23(12):2233–2241PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bai T, Chen C-C, Lau LF (2010) Matricellular protein Ccn1 activates a proinflammatory genetic program in murine macrophages. J Immunol 184(6):3223–3232PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bara JJ, Richards RG, Alini M, Stoddart MJ (2014) Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 32(7):1713–1723. doi: 10.1002/stem.1649 CrossRefPubMedGoogle Scholar
  4. Battula VL, Chen Y, Cabreira MG, Ruvolo V, Wang Z, Ma W et al (2013) Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment. Blood 122(3):357–366. doi: 10.1182/blood-2012-06-437988 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bian Z, Peng Y, You Z, Wang Q, Miao Q, Liu Y et al (2013) Ccn1 expression in hepatocytes contributes to macrophage infiltration in nonalcoholic fatty liver disease in mice. J Lipid Res 54(1):44–54PubMedCentralCrossRefPubMedGoogle Scholar
  6. Birgersdotter A, Baumforth KRN, Wei W, Murray PG, Sjöberg J, Björkholm M et al (2010) Connective tissue growth factor is expressed in malignant cells of Hodgkin lymphoma but not in other mature B-cell lymphomas. Am J Clin Pathol 133(2):271–280. doi: 10.1309/ajcpg7h0ssryknkh CrossRefPubMedGoogle Scholar
  7. Blenk S, Engelmann J, Weniger M, Schultz J, Dittrich M, Rosenwald A et al (2007) Germinal center B cell-like (Gcb) and activated B cell-like (Abc) type of diffuse large B cell lymphoma (Dlbcl): analysis of molecular predictors, signatures, cell cycle state and patient survival. Cancer Informat 3:399Google Scholar
  8. Boag JM, Beesley AH, Firth MJ, Freitas JR, Ford J, Brigstock DR et al (2007) High expression of connective tissue growth factor in pre-B acute lymphoblastic leukaemia. Br J Haematol 138(6):740–748. doi: 10.1111/j.1365-2141.2007.06739.x CrossRefPubMedGoogle Scholar
  9. Bork P (1993) The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 327(2):125CrossRefPubMedGoogle Scholar
  10. Bühring H-J, Treml S, Cerabona F, De Zwart P, Kanz L, Sobiesiak M (2009) Phenotypic characterization of distinct human bone marrow-derived Msc subsets. Ann N Y Acad Sci 1176(1):124–134CrossRefPubMedGoogle Scholar
  11. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F (2009) The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 114(16):3367–3375CrossRefPubMedGoogle Scholar
  12. Campo E, Swerdlow S, Harris N, Pileri S, Stein H, Jaffe E (2011) The 2008 who classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117(19):5019–5032PubMedCentralCrossRefPubMedGoogle Scholar
  13. Chen C-C, Lau LF (2009) Functions and mechanisms of action of Ccn matricellular proteins. Int J Biochem Cell Biol 41(4):771–783PubMedCentralCrossRefPubMedGoogle Scholar
  14. Chen P-C, Cheng H-C, Wang J, Wang S-W, Tai H-C, Lin C-W et al (2014a) Prostate cancer-derived Ccn3 induces M2 macrophage infiltration and contributes to angiogenesis in prostate cancer microenvironment. Oncotarget 5(6):1595PubMedCentralCrossRefPubMedGoogle Scholar
  15. Chen P-C, Cheng H-C, Yang S-F, Lin C-W, Tang C-H (2014b) The Ccn family proteins: modulators of bone development and novel targets in bone-associated tumors. Biomed Res Int 2014(437096):11 p. doi: 10.1155/2014/437096
  16. Cheng W, Chang M, Sun W, Lee C, Lin H, Su Y et al (2008) Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism. Gene Ther 15(13):1007–1016CrossRefPubMedGoogle Scholar
  17. Cheung LC, Strickland DH, Howlett M, Ford J, Charles AK, Lyons KM et al (2014) Connective tissue growth factor is expressed in bone marrow stromal cells and promotes Il-7-dependent B lymphopoiesis. Haematologica 99:1149–1156PubMedCentralCrossRefPubMedGoogle Scholar
  18. Chihara D, Ito H, Matsuda T, Shibata A, Katsumi A, Nakamura S et al (2014) Differences in incidence and trends of haematological malignancies in Japan and the United States. Br J Haematol 164(4):536–545. doi: 10.1111/bjh.12659 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Chong H, Tan C, Huang R, Tan N (2012) Matricellular proteins: a sticky affair with cancers. J Oncol 2012:1CrossRefGoogle Scholar
  20. Corre J, Mahtouk KN, Attal M, Gadelorge ML, Huynh A, Fleury-Cappellesso S et al (2007) Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21(5):1079–1088PubMedCentralPubMedGoogle Scholar
  21. Crockett JC, SchuÃàtze N, Tosh D, Jatzke S, Duthie A, Jakob F et al (2007) The matricellular protein Cyr61 inhibits osteoclastogenesis by a mechanism independent of Αvβ3 and Αvβ5. Endocrinology 148(12):5761–5768CrossRefPubMedGoogle Scholar
  22. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299. doi: 10.1634/stemcells.2007-1122 CrossRefPubMedGoogle Scholar
  23. Desnoyers L (2004) Structural basis and therapeutic implication of the interaction of Ccn proteins with glycoconjugates. Curr Pharm Des 10(31):3913–3928CrossRefPubMedGoogle Scholar
  24. Dotterweich J, Ebert R, Kraus S, Tower RJ, Jakob F, Schütze N (2014) Mesenchymal stem cell contact promotes Ccn1 splicing and transcription in myeloma cells. Cell Commun Signal 12(1):36PubMedCentralCrossRefPubMedGoogle Scholar
  25. French DM, Kaul RJ, D’souza AL, Crowley CW, Bao M, Frantz GD et al (2004) Wisp-1 is an Osteoblastic regulator expressed during skeletal development and fracture repair. Am J Pathol 165(3):855–867PubMedCentralCrossRefPubMedGoogle Scholar
  26. Gandemer V, Rio A-G, de Tayrac M, Sibut V, Mottier S, Ly Sunnaram B et al (2007) Five distinct biological processes and 14 differentially expressed genes characterize Tel/Aml1-positive leukemia. BMC Genomics 8(1):385PubMedCentralCrossRefPubMedGoogle Scholar
  27. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98(2):251–266CrossRefPubMedGoogle Scholar
  28. Gupta R, Hong D, Iborra F, Sarno S, Enver T (2007) Nov (Ccn3) functions as a regulator of human hematopoietic stem or progenitor cells. Science 316(5824):590–593CrossRefPubMedGoogle Scholar
  29. Hall-Glenn F, Lyons K (2011) Roles for Ccn2 in normal physiological processes. Cell Mol Life Sci 68(19):3209–3217. doi: 10.1007/s00018-011-0782-7 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMedGoogle Scholar
  31. Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94(2):258–263PubMedCentralCrossRefPubMedGoogle Scholar
  32. Harvey RC, Mullighan CG, Wang X, Dobbin KK, Davidson GS, Bedrick EJ et al (2010) Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 116(23):4874–4884PubMedCentralCrossRefPubMedGoogle Scholar
  33. Hematti P (2012) Mesenchymal stromal cells and fibroblasts: a case of mistaken identity? Cytotherapy 14(5):516–521CrossRefPubMedGoogle Scholar
  34. Hose D, Moreaux JRM, Meissner T, Seckinger A, Goldschmidt H, Benner A et al (2009) Induction of angiogenesis by normal and malignant plasma cells. Blood 114(1):128–143CrossRefPubMedGoogle Scholar
  35. Inkson CA, Ono M, Kuznetsov SA, Fisher LW, Robey PG, Young MF (2008) Tgf-Β1 and wisp-1/Ccn-4 can regulate each other’s activity to cooperatively control osteoblast function. J Cell Biochem 104(5):1865–1878PubMedCentralCrossRefPubMedGoogle Scholar
  36. Ishihara J, Umemoto T, Yamato M, Shiratsuchi Y, Takaki S, Petrich BG et al (2014) Nov/Ccn3 regulates long-term repopulating activity of murine hematopoietic stem cells via integrin Αvβ3. Int J Hematol 99(4):393–406PubMedCentralCrossRefPubMedGoogle Scholar
  37. Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC et al (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130(12):2779–2791PubMedCentralCrossRefPubMedGoogle Scholar
  38. Jedsadayanmata A, Chen C-C, Kireeva ML, Lau LF, Lam SC-T (1999) Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin Αiibβ3. J Biol Chem 274(34):24321–24327CrossRefPubMedGoogle Scholar
  39. Johnson SK, Stewart JP, Bam R, Qu P, Barlogie B, van Rhee F et al (2014) Cyr61/Ccn1 overexpression in the myeloma microenvironment is associated with superior survival and reduced bone disease. Blood 124(13):2051–2060CrossRefPubMedGoogle Scholar
  40. Jones E, McGonagle D (2008) Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford) 47(2):126–131. doi: 10.1093/rheumatology/kem206 CrossRefGoogle Scholar
  41. Jun J-I, Lau LF (2011) Taking aim at the extracellular matrix: Ccn proteins as emerging therapeutic targets. Nat Rev Drug Discov 10(12):945–963PubMedCentralCrossRefPubMedGoogle Scholar
  42. Kang H, Chen I-M, Wilson CS, Bedrick EJ, Harvey RC, Atlas SR et al (2010) Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115(7):1394–1405. doi: 10.1182/blood-2009-05-218560 PubMedCentralCrossRefPubMedGoogle Scholar
  43. Katsube K-I, Ichikawa S, Katsuki Y, Kihara T, Terai M, Lau LF et al (2009) Ccn3 and bone marrow cells. J Cell Commun Signal 3(2):135–145PubMedCentralCrossRefPubMedGoogle Scholar
  44. Kawaki H, Kubota S, Suzuki A, Lazar N, Yamada T, Matsumura T et al (2008) Cooperative regulation of chondrocyte differentiation by Ccn2 and Ccn3 shown by a comprehensive analysis of the Ccn family proteins in cartilage. J Bone Miner Res 23(11):1751–1764CrossRefPubMedGoogle Scholar
  45. Kubota S, Takigawa M (2007) Role of Ccn2/Ctgf/Hcs24 in bone growth. Int Rev Cytol 257:1–41CrossRefPubMedGoogle Scholar
  46. Kubota S, Takigawa M (2015) Cellular and molecular actions of Ccn2/Ctgf and its role under physiological and pathological conditions. Clin Sci 128(3):181–196CrossRefPubMedGoogle Scholar
  47. Kular L, Pakradouni J, Kitabgi P, Laurent M, Martinerie C (2011) The Ccn family: a new class of inflammation modulators? Biochimie 93(3):377–388CrossRefPubMedGoogle Scholar
  48. Kunzmann V, Wilhelm M (2005) Anti-lymphoma effect of Γδ T cells. Leuk Lymphoma 46(5):671–680CrossRefPubMedGoogle Scholar
  49. Leask A, Abraham DJ (2006) All in the Ccn family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119(23):4803–4810. doi: 10.1242/jcs.03270 CrossRefPubMedGoogle Scholar
  50. Lee CH, Shah B, Moioli EK, Mao JJ (2010) Ctgf directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest 120(9):3340–3349PubMedCentralCrossRefPubMedGoogle Scholar
  51. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al (2008) Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359(22):2313–2323. doi: 10.1056/NEJMoa0802885 CrossRefPubMedGoogle Scholar
  52. Li X, Ling W, Khan S, Yaccoby S (2012) Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth. J Bone Miner Res 27(8):1635–1648PubMedCentralCrossRefPubMedGoogle Scholar
  53. Löbel M, Bauer S, Meisel C, Eisenreich A, Kudernatsch R, Tank J et al (2012) Ccn1: a novel inflammation-regulated biphasic immune cell migration modulator. Cell Mol Life Sci 69(18):3101–3113CrossRefPubMedGoogle Scholar
  54. Lu H, Kojima K, Battula V, Korchin B, Shi Y, Chen Y et al. (2013) Targeting connective tissue growth factor (Ctgf) in acute lymphoblastic leukemia preclinical models: anti-Ctgf monoclonal antibody attenuates leukemia growth. Ann Hematol 93(3):485–492Google Scholar
  55. Mahadevan D, Spier C, Della Croce K, Miller S, George B, Riley C et al (2005) Transcript profiling in peripheral T-cell lymphoma, not otherwise specified, and diffuse large B-cell lymphoma identifies distinct tumor profile signatures. Mol Cancer Ther 4(12):1867–1879CrossRefPubMedGoogle Scholar
  56. McCallum L, Irvine A (2009) Ccn3 - a key regulator of the hematopoietic compartment. Blood Rev 23(2):79–85CrossRefPubMedGoogle Scholar
  57. McCallum L, Price S, Planque N, Perbal B, Pierce A, Whetton AD et al (2006) A novel mechanism for Bcr-Abl action: stimulated secretion of Ccn3 is involved in growth and differentiation regulation. Blood 108(5):1716–1723CrossRefPubMedGoogle Scholar
  58. McCallum L, Lu W, Price S, Lazar N, Perbal B, Irvine AE (2009) Ccn3: a key growth regulator in chronic myeloid leukaemia. J Cell Commun Signal 3(2):115–124PubMedCentralCrossRefPubMedGoogle Scholar
  59. McCallum L, Lu W, Price S, Lazar N, Perbal B, Irvine AE (2012) Ccn3 suppresses mitogenic signalling and reinstates growth control mechanisms in chronic myeloid leukaemia. J Cell Commun Signal 6(1):27–35PubMedCentralCrossRefPubMedGoogle Scholar
  60. Minamizato T, Sakamoto K, Liu T, Kokubo H, Katsube K-I, Perbal B et al (2007) Ccn3/Nov inhibits Bmp-2-induced osteoblast differentiation by interacting with Bmp and notch signaling pathways. Biochem Biophys Res Commun 354(2):567–573CrossRefPubMedGoogle Scholar
  61. Mo F-E, Muntean AG, Chen C-C, Stolz DB, Watkins SC, Lau LF (2002) Cyr61 (Ccn1) is essential for placental development and vascular integrity. Mol Cell Biol 22(24):8709–8720PubMedCentralCrossRefPubMedGoogle Scholar
  62. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334. doi: 10.1038/nature12984 PubMedCentralCrossRefPubMedGoogle Scholar
  63. Munemasa S, Sakai A, Kuroda Y, Okikawa Y, Katayama Y, Asaoku H et al (2007) Connective tissue growth factor is an indicator of bone involvement in multiple myeloma, but matrix metalloproteinase‐9 is not. Br J Haematol 139(1):41–50CrossRefPubMedGoogle Scholar
  64. Niu C-C, Zhao C, Yang Z, Zhang X-L, Pan J, Si W-K (2014) Inhibiting Ccn1 blocks Aml cell growth by disrupting the Mek/Erk pathway. Apoptosis 19:21Google Scholar
  65. Piccaluga PP, Agostinelli C, Califano A, Carbone A, Fantoni L, Ferrari S et al (2007a) Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res 67(22):10703–10710CrossRefPubMedGoogle Scholar
  66. Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S et al (2007b) Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest 117(117 (3)):823–834PubMedCentralCrossRefPubMedGoogle Scholar
  67. Rachfal AW, Brigstock DR (2005) Structural and functional properties of Ccn proteins. Vitam Horm 70:69–103CrossRefPubMedGoogle Scholar
  68. Rhodes JM, Simons M (2007) The extracellular matrix and blood vessel formation: not just a scaffold. J Cell Mol Med 11(2):176–205PubMedCentralCrossRefPubMedGoogle Scholar
  69. Riether C, Schürch C, Ochsenbein A (2015) Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ 22(2):187–198PubMedCentralCrossRefPubMedGoogle Scholar
  70. Rimsza LM, LeBlanc ML, Unger JM, Miller TP, Grogan TM, Persky DO et al (2008) Gene expression predicts overall survival in paraffin-embedded tissues of diffuse large B-cell lymphoma treated with R-chop. Blood 112(8):3425–3433PubMedCentralCrossRefPubMedGoogle Scholar
  71. Rizzatti EG, Falcão RP, Panepucci RA, Proto-Siqueira R, Anselmo-Lima WT, Okamoto OK et al (2005) Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the Pi3k-akt, Wnt and Tgfβ signalling pathways. Br J Haematol 130(4):516–526CrossRefPubMedGoogle Scholar
  72. Roncoroni L, Maerz J, Angres B, Steuer H, Benz K (2013) Adhesion to extracellular matrix proteins can differentiate between human bone marrow derived mesenchymal stem cells and fibroblasts. J Tissue Sci Eng 11:2Google Scholar
  73. Rother M, Krohn S, Kania G, Vanhoutte D, Eisenreich A, Wang X et al (2010) Matricellular signaling molecule Ccn1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulatorclinical perspective. Circulation 122(25):2688–2698CrossRefPubMedGoogle Scholar
  74. Ruhl J, Adamo M, Dickie L (2015) Hematopoietic and lymphoid neoplasm coding manual. National Cancer Institute, Bethesda, MDGoogle Scholar
  75. Russo JW, Castellot JJ Jr (2010) Ccn5: biology and pathophysiology. J Cell Commun Signal 4(3):119–130PubMedCentralCrossRefPubMedGoogle Scholar
  76. Safadi FF, Xu J, Smock SL, Kanaan RA, Selim AH, Odgren PR et al (2003) Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J Cell Physiol 196(1):51–62. doi: 10.1002/jcp.10319 CrossRefPubMedGoogle Scholar
  77. Sakamoto K, Yamaguchi S, Ando R, Miyawaki A, Kabasawa Y, Takagi M et al (2002) The nephroblastoma overexpressed gene (Nov/Ccn3) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via notch signaling pathway. J Biol Chem 277(33):29399–29405CrossRefPubMedGoogle Scholar
  78. Sala-Torra O, Gundacker HM, Stirewalt DL, Ladne PA, Pogosova-Agadjanyan EL, Slovak ML et al (2007) Connective tissue growth factor (Ctgf) expression and outcome in adult patients with acute lymphoblastic leukemia. Blood 109(7):3080–3083PubMedCentralPubMedGoogle Scholar
  79. Sant M, Allemani C, Tereanu C, De Angelis R, Capocaccia R, Visser O et al (2010) Incidence of hematological malignancies in Europe by morphological subtype: results of the Haemacare project. Blood 116(19):3724–3734CrossRefPubMedGoogle Scholar
  80. Santra M, Shaughnessy J Jr, Bellamy W (2011) Expression of multiple myeloma associated markers in bone marrow spicules using a novel immunohistochemical technique. Biotech Histochem 86(2):119–123PubMedCentralCrossRefPubMedGoogle Scholar
  81. Schlegelmilch K, Keller A, Zehe V, Hondke S, Schilling T, Jakob F et al (2014) Wisp 1 is an important survival factor in human mesenchymal stromal cells. Gene 551(2):243–254CrossRefPubMedGoogle Scholar
  82. Schober JM, Chen N, Grzeszkiewicz TM, Jovanovic I, Emeson EE, Ugarova TP et al (2002) Identification of integrin Αmβ2 as an adhesion receptor on peripheral blood monocytes for Cyr61 (Ccn1) and connective tissue growth factor (Ccn2): immediate-early gene products expressed in atherosclerotic lesions. Blood 99(12):4457–4465CrossRefPubMedGoogle Scholar
  83. Schutze N, Noth U, Schneidereit J, Hendrich C, Jakob F (2005) Differential expression of Ccn-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation. Cell Commun Signal 3(1):5PubMedCentralCrossRefPubMedGoogle Scholar
  84. Si W, Kang Q, Luu HH, Park JK, Luo Q, Song W-X et al (2006) Ccn1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3a-induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol 26(8):2955–2964PubMedCentralCrossRefPubMedGoogle Scholar
  85. Siclari VA, Zhu J, Akiyama K, Liu F, Zhang X, Chandra A et al (2013) Mesenchymal progenitors residing close to the bone surface are functionally distinct from those in the central bone marrow. Bone 53(2):575–586. doi: 10.1016/j.bone.2012.12.013 PubMedCentralCrossRefPubMedGoogle Scholar
  86. Sudo K, Kanno M, Miharada K, Ogawa S, Hiroyama T, Saijo K et al (2007) Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary Fibroblas-like cell populations. Stem Cells 25(7):1610–1617CrossRefPubMedGoogle Scholar
  87. Sumiyoshi K, Kubota S, Furuta RA, Yasui K, Aoyama E, Kawaki H et al (2010) Thrombopoietic-mesenchymal interaction that may facilitate both endochondral ossification and platelet maturation via Ccn2. J Cell Commun Signal 4(1):5–14PubMedCentralCrossRefPubMedGoogle Scholar
  88. Suresh S, McCallum L, Lu W, Lazar N, Perbal B, Irvine AE (2011) Micrornas 130a/B are regulated by Bcr-Abl and downregulate expression of Ccn3 in Cml. J Cell Commun Signal 5(3):183–191PubMedCentralCrossRefPubMedGoogle Scholar
  89. Suresh S, McCallum L, Crawford LJ, Lu WH, Sharpe DJ, Irvine AE (2013) The matricellular protein Ccn3 regulates Notch1 signalling in chronic myeloid leukaemia. J Pathol 231(3):378–387PubMedCentralCrossRefPubMedGoogle Scholar
  90. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (2008) World health organization classification of tumours of haematopoietic and lymphoid tissues, vol 2, 4th edn. World Health Organization, LyonGoogle Scholar
  91. Tesfai Y, Ford J, Carter KW, Firth MJ, O’Leary RA, Gottardo NG et al (2012) Interactions between acute lymphoblastic leukemia and bone marrow stromal cells influence response to therapy. Leuk Res 36(3):299–306CrossRefPubMedGoogle Scholar
  92. Thorne A, Meisen W, Russell L, Yoo J, Bolyard C, Lathia J et al (2014) Role of cysteine-rich 61 protein (Ccn1) in macrophage-mediated Oncolytic herpes simplex virus clearance. Mol Ther 22:1678–1687PubMedCentralCrossRefPubMedGoogle Scholar
  93. Tong Z, Sant S, Khademhosseini A, Jia X (2011) Controlling the fibroblastic differentiation of mesenchymal stem cells via the combination of fibrous scaffolds and connective tissue growth factor. Tissue Eng A 17(21–22):2773–2785CrossRefGoogle Scholar
  94. Vorwerk P, Wex H, Hohmann B, Oh Y, Rosenfeld RG, Mittler U (2000) Ctgf (Igfbp-Rp2) is specifically expressed in malignant lymphoblasts of patients with acute lymphoblastic leukaemia (All). Br J Cancer 83(6):756PubMedCentralCrossRefPubMedGoogle Scholar
  95. Wang W, Strecker S, Liu Y, Wang L, Assanah F, Smith S et al (2015) Connective tissue growth factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region. Bone 71:76–88CrossRefPubMedGoogle Scholar
  96. Wells JE, Howlett M, Cole CH, Kees UR (2014) Deregulated expression of connective tissue growth factor (Ctgf/Ccn2) is linked to poor outcome in human cancer. Int J Cancer. doi: 10.1002/ijc.28972 PubMedGoogle Scholar
  97. Wong M, Kireeva ML, Kolesnikova TV, Lau LF (1997) Cyr61, product of a growth factor-inducible immediate-early gene, regulates chondrogenesis in mouse limb Bud mesenchymal cells. Dev Biol 192(2):492–508CrossRefPubMedGoogle Scholar
  98. Workalemahu G, Foerster M, Kroegel C, Braun RK (2003) Human Γδ-T lymphocytes express and synthesize connective tissue growth factor: effect of Il-15 and Tgf-Β1 and comparison with Αβ-T lymphocytes. J Immunol 170(1):153–157CrossRefPubMedGoogle Scholar
  99. Yanagita T, Kubota S, Kawaki H, Kawata K, Kondo S, Takano-Yamamoto T et al (2007) Expression and physiological role of Ccn4/Wnt-induced secreted protein 1 Mrna splicing variants in chondrocytes. FEBS J 274(7):1655–1665CrossRefPubMedGoogle Scholar
  100. Yu C, Le AÄ, Yeger H, Perbal B, Alman BA (2003) Nov (Ccn3) regulation in the growth plate and Ccn family member expression in cartilage neoplasia. J Pathol 201(4):609–615CrossRefPubMedGoogle Scholar
  101. Zhu X, Xiao L, Huo R, Zhang J, Lin J, Xie J et al (2013) Cyr61 is involved in neutrophil infiltration in joints by inducing Il-8 production by fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther 15(6):R187PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© The International CCN Society 2015

Authors and Affiliations

  • J. E. Wells
    • 1
  • M. Howlett
    • 1
  • L. C. Cheung
    • 1
  • Ursula R. Kees
    • 1
  1. 1.Telethon Kids InstituteThe University of Western AustraliaPerthAustralia

Personalised recommendations