Skip to main content
Log in

The role of CCN family genes in haematological malignancies

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Haematological malignancies, although a broad range of specific disease types, continue to show considerable overlap in classification, and patients are treated using similar chemotherapy regimes. In this review we look at the role of the CCN family of matricellular proteins and indicate their role in nine haematological malignancies including both myeloid and lymphoid neoplasms. The potential for further haematological neoplasms with CCN family associations is argued by summarising the demonstrated role of CCN family genes in the differentiation of haematopoietic stem cells (HSC) and mesenchymal stem cells. The expanding field of knowledge encompassing CCN family genes and cancers of the HSC-lineage highlights the importance of extracellular matrix-interactions in both normal physiology and tumorigenesis of the blood, bone marrow and lymph nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoblastic leukaemia

AML:

Acute myeloid leukaemia

Bax:

Bcl-2-associated X protein

Bcl-xl:

B-cell lymphoma- extra large

BMP:

Bone morphogenic protein

CML:

Chronic myeloid leukaemia

CDKN1B:

Cyclin independent kinase inhibitor protein 27

CLP:

Common lymphoid progenitors

CMP:

Common myeloid progenitor

CTGF/CCN2:

Connective tissue growth factor

CYR61/CCN1:

Cysteine-rich 61

DLCBL:

Diffuse large B-cell lymphoma

Dlk:

Delta like kinase

ECM:

Extracellular matrix

ELISA:

Enzyme-linked immunosorbent assays

FSP1:

Fibroblast-specific protein 1

HSC:

Haematopoietic stem cell

IGFBP:

Insulin-like growth factor-binding proteins

LRP:

Low-density lipoprotein receptor-related protein

MCIJ:

Monitoring of Cancer Incidence in Japan

MMP:

Matrix metalloproteinase

MPP:

Multipotent progenitor

MSC:

Mesenchymal stem cell

NOV/CCN3 NOV:

Nephroblastoma overexpressed

RBC:

Red blood cell

SEER:

Surveillance, epidemiology and end results program (SEER)

TGFβ:

Transforming growth factor β

TRAIL:

TNF-related apoptosis-inducing ligand 1

TrkA:

Tropomyosin receptor kinase A

TSR:

Thrombospondin type 1 repeat

VEGF:

Vascular endothelial growth factor

VWC:

Von Willebrand factor C

WISP-1/CCN4:

Wnt-inducible-secreted protein 1

WISP-2/CCN5:

Wnt-inducible-secreted protein 2

WISP-3/CCN6:

Wnt-inducible-secreted protein 3

References

  • Ayala F, Dewar R, Kieran M, Kalluri R (2009) Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia 23(12):2233–2241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai T, Chen C-C, Lau LF (2010) Matricellular protein Ccn1 activates a proinflammatory genetic program in murine macrophages. J Immunol 184(6):3223–3232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bara JJ, Richards RG, Alini M, Stoddart MJ (2014) Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 32(7):1713–1723. doi:10.1002/stem.1649

    Article  CAS  PubMed  Google Scholar 

  • Battula VL, Chen Y, Cabreira MG, Ruvolo V, Wang Z, Ma W et al (2013) Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment. Blood 122(3):357–366. doi:10.1182/blood-2012-06-437988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bian Z, Peng Y, You Z, Wang Q, Miao Q, Liu Y et al (2013) Ccn1 expression in hepatocytes contributes to macrophage infiltration in nonalcoholic fatty liver disease in mice. J Lipid Res 54(1):44–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birgersdotter A, Baumforth KRN, Wei W, Murray PG, Sjöberg J, Björkholm M et al (2010) Connective tissue growth factor is expressed in malignant cells of Hodgkin lymphoma but not in other mature B-cell lymphomas. Am J Clin Pathol 133(2):271–280. doi:10.1309/ajcpg7h0ssryknkh

    Article  PubMed  Google Scholar 

  • Blenk S, Engelmann J, Weniger M, Schultz J, Dittrich M, Rosenwald A et al (2007) Germinal center B cell-like (Gcb) and activated B cell-like (Abc) type of diffuse large B cell lymphoma (Dlbcl): analysis of molecular predictors, signatures, cell cycle state and patient survival. Cancer Informat 3:399

    CAS  Google Scholar 

  • Boag JM, Beesley AH, Firth MJ, Freitas JR, Ford J, Brigstock DR et al (2007) High expression of connective tissue growth factor in pre-B acute lymphoblastic leukaemia. Br J Haematol 138(6):740–748. doi:10.1111/j.1365-2141.2007.06739.x

    Article  CAS  PubMed  Google Scholar 

  • Bork P (1993) The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 327(2):125

    Article  CAS  PubMed  Google Scholar 

  • Bühring H-J, Treml S, Cerabona F, De Zwart P, Kanz L, Sobiesiak M (2009) Phenotypic characterization of distinct human bone marrow-derived Msc subsets. Ann N Y Acad Sci 1176(1):124–134

    Article  PubMed  Google Scholar 

  • Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F (2009) The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 114(16):3367–3375

    Article  CAS  PubMed  Google Scholar 

  • Campo E, Swerdlow S, Harris N, Pileri S, Stein H, Jaffe E (2011) The 2008 who classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117(19):5019–5032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen C-C, Lau LF (2009) Functions and mechanisms of action of Ccn matricellular proteins. Int J Biochem Cell Biol 41(4):771–783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen P-C, Cheng H-C, Wang J, Wang S-W, Tai H-C, Lin C-W et al (2014a) Prostate cancer-derived Ccn3 induces M2 macrophage infiltration and contributes to angiogenesis in prostate cancer microenvironment. Oncotarget 5(6):1595

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen P-C, Cheng H-C, Yang S-F, Lin C-W, Tang C-H (2014b) The Ccn family proteins: modulators of bone development and novel targets in bone-associated tumors. Biomed Res Int 2014(437096):11 p. doi:10.1155/2014/437096

  • Cheng W, Chang M, Sun W, Lee C, Lin H, Su Y et al (2008) Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism. Gene Ther 15(13):1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Cheung LC, Strickland DH, Howlett M, Ford J, Charles AK, Lyons KM et al (2014) Connective tissue growth factor is expressed in bone marrow stromal cells and promotes Il-7-dependent B lymphopoiesis. Haematologica 99:1149–1156

    Article  PubMed Central  PubMed  Google Scholar 

  • Chihara D, Ito H, Matsuda T, Shibata A, Katsumi A, Nakamura S et al (2014) Differences in incidence and trends of haematological malignancies in Japan and the United States. Br J Haematol 164(4):536–545. doi:10.1111/bjh.12659

    Article  PubMed Central  PubMed  Google Scholar 

  • Chong H, Tan C, Huang R, Tan N (2012) Matricellular proteins: a sticky affair with cancers. J Oncol 2012:1

    Article  Google Scholar 

  • Corre J, Mahtouk KN, Attal M, Gadelorge ML, Huynh A, Fleury-Cappellesso S et al (2007) Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21(5):1079–1088

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crockett JC, SchuÃàtze N, Tosh D, Jatzke S, Duthie A, Jakob F et al (2007) The matricellular protein Cyr61 inhibits osteoclastogenesis by a mechanism independent of Αvβ3 and Αvβ5. Endocrinology 148(12):5761–5768

    Article  CAS  PubMed  Google Scholar 

  • da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299. doi:10.1634/stemcells.2007-1122

    Article  PubMed  Google Scholar 

  • Desnoyers L (2004) Structural basis and therapeutic implication of the interaction of Ccn proteins with glycoconjugates. Curr Pharm Des 10(31):3913–3928

    Article  CAS  PubMed  Google Scholar 

  • Dotterweich J, Ebert R, Kraus S, Tower RJ, Jakob F, Schütze N (2014) Mesenchymal stem cell contact promotes Ccn1 splicing and transcription in myeloma cells. Cell Commun Signal 12(1):36

    Article  PubMed Central  PubMed  Google Scholar 

  • French DM, Kaul RJ, D’souza AL, Crowley CW, Bao M, Frantz GD et al (2004) Wisp-1 is an Osteoblastic regulator expressed during skeletal development and fracture repair. Am J Pathol 165(3):855–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gandemer V, Rio A-G, de Tayrac M, Sibut V, Mottier S, Ly Sunnaram B et al (2007) Five distinct biological processes and 14 differentially expressed genes characterize Tel/Aml1-positive leukemia. BMC Genomics 8(1):385

    Article  PubMed Central  PubMed  Google Scholar 

  • Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98(2):251–266

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Hong D, Iborra F, Sarno S, Enver T (2007) Nov (Ccn3) functions as a regulator of human hematopoietic stem or progenitor cells. Science 316(5824):590–593

    Article  CAS  PubMed  Google Scholar 

  • Hall-Glenn F, Lyons K (2011) Roles for Ccn2 in normal physiological processes. Cell Mol Life Sci 68(19):3209–3217. doi:10.1007/s00018-011-0782-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94(2):258–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harvey RC, Mullighan CG, Wang X, Dobbin KK, Davidson GS, Bedrick EJ et al (2010) Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 116(23):4874–4884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hematti P (2012) Mesenchymal stromal cells and fibroblasts: a case of mistaken identity? Cytotherapy 14(5):516–521

    Article  CAS  PubMed  Google Scholar 

  • Hose D, Moreaux JRM, Meissner T, Seckinger A, Goldschmidt H, Benner A et al (2009) Induction of angiogenesis by normal and malignant plasma cells. Blood 114(1):128–143

    Article  CAS  PubMed  Google Scholar 

  • Inkson CA, Ono M, Kuznetsov SA, Fisher LW, Robey PG, Young MF (2008) Tgf-Β1 and wisp-1/Ccn-4 can regulate each other’s activity to cooperatively control osteoblast function. J Cell Biochem 104(5):1865–1878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishihara J, Umemoto T, Yamato M, Shiratsuchi Y, Takaki S, Petrich BG et al (2014) Nov/Ccn3 regulates long-term repopulating activity of murine hematopoietic stem cells via integrin Αvβ3. Int J Hematol 99(4):393–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC et al (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130(12):2779–2791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jedsadayanmata A, Chen C-C, Kireeva ML, Lau LF, Lam SC-T (1999) Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin Αiibβ3. J Biol Chem 274(34):24321–24327

    Article  CAS  PubMed  Google Scholar 

  • Johnson SK, Stewart JP, Bam R, Qu P, Barlogie B, van Rhee F et al (2014) Cyr61/Ccn1 overexpression in the myeloma microenvironment is associated with superior survival and reduced bone disease. Blood 124(13):2051–2060

    Article  CAS  PubMed  Google Scholar 

  • Jones E, McGonagle D (2008) Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford) 47(2):126–131. doi:10.1093/rheumatology/kem206

    Article  CAS  Google Scholar 

  • Jun J-I, Lau LF (2011) Taking aim at the extracellular matrix: Ccn proteins as emerging therapeutic targets. Nat Rev Drug Discov 10(12):945–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang H, Chen I-M, Wilson CS, Bedrick EJ, Harvey RC, Atlas SR et al (2010) Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115(7):1394–1405. doi:10.1182/blood-2009-05-218560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katsube K-I, Ichikawa S, Katsuki Y, Kihara T, Terai M, Lau LF et al (2009) Ccn3 and bone marrow cells. J Cell Commun Signal 3(2):135–145

    Article  PubMed Central  PubMed  Google Scholar 

  • Kawaki H, Kubota S, Suzuki A, Lazar N, Yamada T, Matsumura T et al (2008) Cooperative regulation of chondrocyte differentiation by Ccn2 and Ccn3 shown by a comprehensive analysis of the Ccn family proteins in cartilage. J Bone Miner Res 23(11):1751–1764

    Article  CAS  PubMed  Google Scholar 

  • Kubota S, Takigawa M (2007) Role of Ccn2/Ctgf/Hcs24 in bone growth. Int Rev Cytol 257:1–41

    Article  CAS  PubMed  Google Scholar 

  • Kubota S, Takigawa M (2015) Cellular and molecular actions of Ccn2/Ctgf and its role under physiological and pathological conditions. Clin Sci 128(3):181–196

    Article  CAS  PubMed  Google Scholar 

  • Kular L, Pakradouni J, Kitabgi P, Laurent M, Martinerie C (2011) The Ccn family: a new class of inflammation modulators? Biochimie 93(3):377–388

    Article  CAS  PubMed  Google Scholar 

  • Kunzmann V, Wilhelm M (2005) Anti-lymphoma effect of Γδ T cells. Leuk Lymphoma 46(5):671–680

    Article  CAS  PubMed  Google Scholar 

  • Leask A, Abraham DJ (2006) All in the Ccn family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119(23):4803–4810. doi:10.1242/jcs.03270

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Shah B, Moioli EK, Mao JJ (2010) Ctgf directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest 120(9):3340–3349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al (2008) Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359(22):2313–2323. doi:10.1056/NEJMoa0802885

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ling W, Khan S, Yaccoby S (2012) Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth. J Bone Miner Res 27(8):1635–1648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Löbel M, Bauer S, Meisel C, Eisenreich A, Kudernatsch R, Tank J et al (2012) Ccn1: a novel inflammation-regulated biphasic immune cell migration modulator. Cell Mol Life Sci 69(18):3101–3113

    Article  PubMed  Google Scholar 

  • Lu H, Kojima K, Battula V, Korchin B, Shi Y, Chen Y et al. (2013) Targeting connective tissue growth factor (Ctgf) in acute lymphoblastic leukemia preclinical models: anti-Ctgf monoclonal antibody attenuates leukemia growth. Ann Hematol 93(3):485–492

  • Mahadevan D, Spier C, Della Croce K, Miller S, George B, Riley C et al (2005) Transcript profiling in peripheral T-cell lymphoma, not otherwise specified, and diffuse large B-cell lymphoma identifies distinct tumor profile signatures. Mol Cancer Ther 4(12):1867–1879

    Article  CAS  PubMed  Google Scholar 

  • McCallum L, Irvine A (2009) Ccn3 - a key regulator of the hematopoietic compartment. Blood Rev 23(2):79–85

    Article  CAS  PubMed  Google Scholar 

  • McCallum L, Price S, Planque N, Perbal B, Pierce A, Whetton AD et al (2006) A novel mechanism for Bcr-Abl action: stimulated secretion of Ccn3 is involved in growth and differentiation regulation. Blood 108(5):1716–1723

    Article  CAS  PubMed  Google Scholar 

  • McCallum L, Lu W, Price S, Lazar N, Perbal B, Irvine AE (2009) Ccn3: a key growth regulator in chronic myeloid leukaemia. J Cell Commun Signal 3(2):115–124

    Article  PubMed Central  PubMed  Google Scholar 

  • McCallum L, Lu W, Price S, Lazar N, Perbal B, Irvine AE (2012) Ccn3 suppresses mitogenic signalling and reinstates growth control mechanisms in chronic myeloid leukaemia. J Cell Commun Signal 6(1):27–35

    Article  PubMed Central  PubMed  Google Scholar 

  • Minamizato T, Sakamoto K, Liu T, Kokubo H, Katsube K-I, Perbal B et al (2007) Ccn3/Nov inhibits Bmp-2-induced osteoblast differentiation by interacting with Bmp and notch signaling pathways. Biochem Biophys Res Commun 354(2):567–573

    Article  CAS  PubMed  Google Scholar 

  • Mo F-E, Muntean AG, Chen C-C, Stolz DB, Watkins SC, Lau LF (2002) Cyr61 (Ccn1) is essential for placental development and vascular integrity. Mol Cell Biol 22(24):8709–8720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334. doi:10.1038/nature12984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Munemasa S, Sakai A, Kuroda Y, Okikawa Y, Katayama Y, Asaoku H et al (2007) Connective tissue growth factor is an indicator of bone involvement in multiple myeloma, but matrix metalloproteinase‐9 is not. Br J Haematol 139(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Niu C-C, Zhao C, Yang Z, Zhang X-L, Pan J, Si W-K (2014) Inhibiting Ccn1 blocks Aml cell growth by disrupting the Mek/Erk pathway. Apoptosis 19:21

    Google Scholar 

  • Piccaluga PP, Agostinelli C, Califano A, Carbone A, Fantoni L, Ferrari S et al (2007a) Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res 67(22):10703–10710

    Article  CAS  PubMed  Google Scholar 

  • Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S et al (2007b) Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest 117(117 (3)):823–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rachfal AW, Brigstock DR (2005) Structural and functional properties of Ccn proteins. Vitam Horm 70:69–103

    Article  CAS  PubMed  Google Scholar 

  • Rhodes JM, Simons M (2007) The extracellular matrix and blood vessel formation: not just a scaffold. J Cell Mol Med 11(2):176–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riether C, Schürch C, Ochsenbein A (2015) Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ 22(2):187–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rimsza LM, LeBlanc ML, Unger JM, Miller TP, Grogan TM, Persky DO et al (2008) Gene expression predicts overall survival in paraffin-embedded tissues of diffuse large B-cell lymphoma treated with R-chop. Blood 112(8):3425–3433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rizzatti EG, Falcão RP, Panepucci RA, Proto-Siqueira R, Anselmo-Lima WT, Okamoto OK et al (2005) Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the Pi3k-akt, Wnt and Tgfβ signalling pathways. Br J Haematol 130(4):516–526

    Article  CAS  PubMed  Google Scholar 

  • Roncoroni L, Maerz J, Angres B, Steuer H, Benz K (2013) Adhesion to extracellular matrix proteins can differentiate between human bone marrow derived mesenchymal stem cells and fibroblasts. J Tissue Sci Eng 11:2

    Google Scholar 

  • Rother M, Krohn S, Kania G, Vanhoutte D, Eisenreich A, Wang X et al (2010) Matricellular signaling molecule Ccn1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulatorclinical perspective. Circulation 122(25):2688–2698

    Article  CAS  PubMed  Google Scholar 

  • Ruhl J, Adamo M, Dickie L (2015) Hematopoietic and lymphoid neoplasm coding manual. National Cancer Institute, Bethesda, MD

    Google Scholar 

  • Russo JW, Castellot JJ Jr (2010) Ccn5: biology and pathophysiology. J Cell Commun Signal 4(3):119–130

    Article  PubMed Central  PubMed  Google Scholar 

  • Safadi FF, Xu J, Smock SL, Kanaan RA, Selim AH, Odgren PR et al (2003) Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J Cell Physiol 196(1):51–62. doi:10.1002/jcp.10319

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Yamaguchi S, Ando R, Miyawaki A, Kabasawa Y, Takagi M et al (2002) The nephroblastoma overexpressed gene (Nov/Ccn3) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via notch signaling pathway. J Biol Chem 277(33):29399–29405

    Article  CAS  PubMed  Google Scholar 

  • Sala-Torra O, Gundacker HM, Stirewalt DL, Ladne PA, Pogosova-Agadjanyan EL, Slovak ML et al (2007) Connective tissue growth factor (Ctgf) expression and outcome in adult patients with acute lymphoblastic leukemia. Blood 109(7):3080–3083

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sant M, Allemani C, Tereanu C, De Angelis R, Capocaccia R, Visser O et al (2010) Incidence of hematological malignancies in Europe by morphological subtype: results of the Haemacare project. Blood 116(19):3724–3734

    Article  CAS  PubMed  Google Scholar 

  • Santra M, Shaughnessy J Jr, Bellamy W (2011) Expression of multiple myeloma associated markers in bone marrow spicules using a novel immunohistochemical technique. Biotech Histochem 86(2):119–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schlegelmilch K, Keller A, Zehe V, Hondke S, Schilling T, Jakob F et al (2014) Wisp 1 is an important survival factor in human mesenchymal stromal cells. Gene 551(2):243–254

    Article  CAS  PubMed  Google Scholar 

  • Schober JM, Chen N, Grzeszkiewicz TM, Jovanovic I, Emeson EE, Ugarova TP et al (2002) Identification of integrin Αmβ2 as an adhesion receptor on peripheral blood monocytes for Cyr61 (Ccn1) and connective tissue growth factor (Ccn2): immediate-early gene products expressed in atherosclerotic lesions. Blood 99(12):4457–4465

    Article  CAS  PubMed  Google Scholar 

  • Schutze N, Noth U, Schneidereit J, Hendrich C, Jakob F (2005) Differential expression of Ccn-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation. Cell Commun Signal 3(1):5

    Article  PubMed Central  PubMed  Google Scholar 

  • Si W, Kang Q, Luu HH, Park JK, Luo Q, Song W-X et al (2006) Ccn1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3a-induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol 26(8):2955–2964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siclari VA, Zhu J, Akiyama K, Liu F, Zhang X, Chandra A et al (2013) Mesenchymal progenitors residing close to the bone surface are functionally distinct from those in the central bone marrow. Bone 53(2):575–586. doi:10.1016/j.bone.2012.12.013

    Article  PubMed Central  PubMed  Google Scholar 

  • Sudo K, Kanno M, Miharada K, Ogawa S, Hiroyama T, Saijo K et al (2007) Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary Fibroblas-like cell populations. Stem Cells 25(7):1610–1617

    Article  CAS  PubMed  Google Scholar 

  • Sumiyoshi K, Kubota S, Furuta RA, Yasui K, Aoyama E, Kawaki H et al (2010) Thrombopoietic-mesenchymal interaction that may facilitate both endochondral ossification and platelet maturation via Ccn2. J Cell Commun Signal 4(1):5–14

    Article  PubMed Central  PubMed  Google Scholar 

  • Suresh S, McCallum L, Lu W, Lazar N, Perbal B, Irvine AE (2011) Micrornas 130a/B are regulated by Bcr-Abl and downregulate expression of Ccn3 in Cml. J Cell Commun Signal 5(3):183–191

    Article  PubMed Central  PubMed  Google Scholar 

  • Suresh S, McCallum L, Crawford LJ, Lu WH, Sharpe DJ, Irvine AE (2013) The matricellular protein Ccn3 regulates Notch1 signalling in chronic myeloid leukaemia. J Pathol 231(3):378–387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (2008) World health organization classification of tumours of haematopoietic and lymphoid tissues, vol 2, 4th edn. World Health Organization, Lyon

    Google Scholar 

  • Tesfai Y, Ford J, Carter KW, Firth MJ, O’Leary RA, Gottardo NG et al (2012) Interactions between acute lymphoblastic leukemia and bone marrow stromal cells influence response to therapy. Leuk Res 36(3):299–306

    Article  CAS  PubMed  Google Scholar 

  • Thorne A, Meisen W, Russell L, Yoo J, Bolyard C, Lathia J et al (2014) Role of cysteine-rich 61 protein (Ccn1) in macrophage-mediated Oncolytic herpes simplex virus clearance. Mol Ther 22:1678–1687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tong Z, Sant S, Khademhosseini A, Jia X (2011) Controlling the fibroblastic differentiation of mesenchymal stem cells via the combination of fibrous scaffolds and connective tissue growth factor. Tissue Eng A 17(21–22):2773–2785

    Article  CAS  Google Scholar 

  • Vorwerk P, Wex H, Hohmann B, Oh Y, Rosenfeld RG, Mittler U (2000) Ctgf (Igfbp-Rp2) is specifically expressed in malignant lymphoblasts of patients with acute lymphoblastic leukaemia (All). Br J Cancer 83(6):756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang W, Strecker S, Liu Y, Wang L, Assanah F, Smith S et al (2015) Connective tissue growth factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region. Bone 71:76–88

    Article  CAS  PubMed  Google Scholar 

  • Wells JE, Howlett M, Cole CH, Kees UR (2014) Deregulated expression of connective tissue growth factor (Ctgf/Ccn2) is linked to poor outcome in human cancer. Int J Cancer. doi:10.1002/ijc.28972

    PubMed  Google Scholar 

  • Wong M, Kireeva ML, Kolesnikova TV, Lau LF (1997) Cyr61, product of a growth factor-inducible immediate-early gene, regulates chondrogenesis in mouse limb Bud mesenchymal cells. Dev Biol 192(2):492–508

    Article  CAS  PubMed  Google Scholar 

  • Workalemahu G, Foerster M, Kroegel C, Braun RK (2003) Human Γδ-T lymphocytes express and synthesize connective tissue growth factor: effect of Il-15 and Tgf-Β1 and comparison with Αβ-T lymphocytes. J Immunol 170(1):153–157

    Article  CAS  PubMed  Google Scholar 

  • Yanagita T, Kubota S, Kawaki H, Kawata K, Kondo S, Takano-Yamamoto T et al (2007) Expression and physiological role of Ccn4/Wnt-induced secreted protein 1 Mrna splicing variants in chondrocytes. FEBS J 274(7):1655–1665

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Le AÄ, Yeger H, Perbal B, Alman BA (2003) Nov (Ccn3) regulation in the growth plate and Ccn family member expression in cartilage neoplasia. J Pathol 201(4):609–615

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Xiao L, Huo R, Zhang J, Lin J, Xie J et al (2013) Cyr61 is involved in neutrophil infiltration in joints by inducing Il-8 production by fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther 15(6):R187

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula R. Kees.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wells, J.E., Howlett, M., Cheung, L.C. et al. The role of CCN family genes in haematological malignancies. J. Cell Commun. Signal. 9, 267–278 (2015). https://doi.org/10.1007/s12079-015-0296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-015-0296-4

Keywords

Navigation