Skip to main content

Advertisement

Log in

Ultrasound to Assess Bone Quality

  • Biomechanics (M Silva and P Zysset, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Bone quality is determined by a variety of compositional, micro- and ultrastructural properties of the mineralized tissue matrix. In contrast to X-ray-based methods, the interaction of acoustic waves with bone tissue carries information about elastic and structural properties of the tissue. Quantitative ultrasound (QUS) methods represent powerful alternatives to ionizing x-ray based assessment of fracture risk. New in vivo applicable methods permit measurements of fracture-relevant properties, [eg, cortical thickness and stiffness at fragile anatomic regions (eg, the distal radius and the proximal femur)]. Experimentally, resonance ultrasound spectroscopy and acoustic microscopy can be used to assess the mesoscale stiffness tensor and elastic maps of the tissue matrix at microscale resolution, respectively. QUS methods, thus, currently represent the most promising approach for noninvasive assessment of components of fragility beyond bone mass and bone microstructure providing prospects for improved assessment of fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ashman RB, Cowin SC, Rho JY, Van Buskirk WC, Rice JC. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech. 1984;17:349–61.

    Article  CAS  PubMed  Google Scholar 

  2. Rho JY. An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics. 1996;34:777–83.

    Article  CAS  PubMed  Google Scholar 

  3. Granke M, Grimal Q, Saied A, Nauleau P, Peyrin F, Laugier P. Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone. 2011;49:1020–6. A multi-scale assessment of cortical bone combining low frequency ultrasound and scanning acoustic microscopy that evidences that porosity explains most of the variations of effective elasticity (ie, mm-scale).

    Article  PubMed  Google Scholar 

  4. Baron C, Talmant M, Laugier P. Effect of porosity on effective diagonal stiffness coefficients (cii) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study. J Acoust Soc Am. 2007;122:1810.

    Article  PubMed  Google Scholar 

  5. Wear KA. Ultrasonic scattering from cancellous bone: a review. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1432–41.

    Article  CAS  PubMed  Google Scholar 

  6. Hakulinen MA, Day JS, Toyras J, Weinans H, Jurvelin JS. Ultrasonic characterization of human trabecular bone microstructure. Phys Med Biol. 2006;51:1633–48.

    Article  PubMed  Google Scholar 

  7. Padilla F, Laugier P. Recent developments in trabecular bone characterization using ultrasound. Curr Osteoporos Rep. 2005;3:64–9.

    Article  PubMed  Google Scholar 

  8. Padilla F, Jenson F, Bousson V, Peyrin F, Laugier P. Relationships of trabecular bone structure with quantitative ultrasound parameters: in vitro study on human proximal femur using transmission and backscatter measurements. Bone. 2008;42:1193–202.

    Article  CAS  PubMed  Google Scholar 

  9. Padilla F, Jenson F, Laugier P. Estimation of trabecular thickness using ultrasonic backscatter. Ultrason Imaging. 2006;28:3–22.

    Article  PubMed  Google Scholar 

  10. Wear KA, Laib A. The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: theoretical and experimental results. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50:979–86.

    Article  PubMed  Google Scholar 

  11. Hoffmeister BK, Whitten SA, Kaste SC, Rho JY. Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone. Osteoporos Int. 2002;13:26–32.

    Article  CAS  PubMed  Google Scholar 

  12. Karjalainen JP, Toyras J, Riekkinen O, Hakulinen M, Jurvelin JS. Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone. Ultrasound Med Biol. 2009;35:1376–84.

    Article  PubMed  Google Scholar 

  13. Riekkinen O, Hakulinen MA, Lammi MJ, Jurvelin JS, Kallioniemi A, Toyras J. Acoustic properties of trabecular bone—relationships to tissue composition. Ultrasound Med Biol. 2007;33:1438–44.

    Article  CAS  PubMed  Google Scholar 

  14. Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, et al. Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One. 2013;8:e58043. A study showing that micro-fibril orientation is the main determinant of the observed undulations of micro-elastic properties measured by scanning acoustic microscopy in regions of constant mineralization in osteonal lamellar bone.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Muller M, Mitton D, Talmant M, Johnson P, Laugier P. Nonlinear ultrasound can detect accumulated damage in human bone. J Biomech. 2008;41:1062–8.

    Article  CAS  PubMed  Google Scholar 

  16. Haupert S, Guerard S, Peyrin F, Mitton D, Laugier P. Nondestructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy. PLoS One. 2014;9:e83599.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Moreschi H, Calle S, Guerard S, Mitton D, Renaud G, Defontaine M. Monitoring trabecular bone microdamage using a dynamic acousto-elastic testing method. Proc Inst Mech Eng H. 2011;225:282–95.

    CAS  PubMed  Google Scholar 

  18. Raum K, Reisshauer J, Brandt J. Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy. J Biomed Mater Res A. 2004;71A:430–8.

    Article  CAS  Google Scholar 

  19. Raum K, Leguerney I, Chandelier F, Bossy E, Talmant M, Saied A, et al. Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol. 2005;31:1225–35.

    Article  PubMed  Google Scholar 

  20. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, et al. Intracortical remodeling and porosity in the distal radius and postmortem femurs of women: a cross-sectional study. Lancet. 2010;375:1729–36. A very important paper re-examining cortical bone as a source of bone loss in the appendicular skeleton. Following this paper, cortical bone got front stage attention from many researchers.

    Article  PubMed  Google Scholar 

  21. Kanis JA, Johnell O, Oden A, Dawson A, De LC, Jonsson B. Ten-year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001;12:989–95.

    Article  CAS  PubMed  Google Scholar 

  22. Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton III LJ. Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest. 1981;67:328–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2010;25:882–90.

    PubMed  Google Scholar 

  24. Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res. 2010;25:983–93.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gluer CC. A new quality of bone ultrasound research. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1524–8.

    Article  CAS  PubMed  Google Scholar 

  26. Laugier P. Instrumentation for in vivo ultrasonic characterization of bone strength. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1179–96.

    Article  PubMed  Google Scholar 

  27. Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med. 1984;13:89–91.

    Article  CAS  PubMed  Google Scholar 

  28. Gluer CC. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res. 1997;12:1280–8.

    Article  CAS  PubMed  Google Scholar 

  29. Marin F, Gonzalez-Macias J, Diez-Perez A, Palma S, Delgado-Rodriguez M. Relationship between bone quantitative ultrasound and fractures: a meta-analysis. J Bone Miner Res. 2006;21:1126–35.

    Article  PubMed  Google Scholar 

  30. Meziere F, Muller M, Dobigny B, Bossy E, Derode A. Simulations of ultrasound propagation in random arrangements of elliptic scatterers: occurrence of two longitudinal waves. J Acoust Soc Am. 2013;133:643–52.

    Article  PubMed  Google Scholar 

  31. Meziere F, Muller M, Bossy E, Derode A. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared with Biot's and multiple scattering models. Ultrasonics. 2013. doi:10.1016/j.ultras.2013.09.013.

    PubMed  Google Scholar 

  32. Pakula M, Padilla F, Laugier P. Influence of the filling fluid on frequency-dependent velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz. J Acoust Soc Am. 2009;126:3301–10.

    Article  PubMed  Google Scholar 

  33. Hoffman JJ, Nelson AM, Holland MR, Miller JG. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography. J Acoust Soc Am. 2012;132:1830–7.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Anderson CC, Bauer AQ, Holland MR, Pakula M, Laugier P, Bretthorst GL, et al. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory. J Acoust Soc Am. 2010;128:2940–8.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mizuno K, Somiya H, Kubo T, Matsukawa M, Otani T, Tsujimoto T. Influence of cancellous bone microstructure on two ultrasonic wave propagations in bovine femur: an in vitro study. J Acoust Soc Am. 2010;128:3181–9.

    Article  PubMed  Google Scholar 

  36. Laugier P, Haiat G, editors. Bone quantitative ultrasound. Dordrecht: Springer Science+Business Media B.V; 2011. The most recent and the most comprehensive view of the field of bone quantitative ultrasound.

    Google Scholar 

  37. Reisinger AG, Pahr DH, Zysset PK. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol. 2010;9:499–510.

    Article  PubMed  Google Scholar 

  38. Tiburtius S, Schrof S, Molnar F, Varga P, Peyrin F, Grimal Q, et al. On the elastic properties of mineralized turkey leg tendon tissue: multi-scale model and experiment. Biomech Model Mechanobiol. 2014. doi:10.1007/s10237-013-0550-8:.

    PubMed  Google Scholar 

  39. Varga P, Pacureanu A, Langer M, Suhonen H, Hesse B, Grimal Q, et al. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomater. 2013;9:8118–27.

    Article  CAS  PubMed  Google Scholar 

  40. Reznikov N, Almany-Magal R, Shahar R, Weiner S. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone. 2013;52:676–83.

    Article  CAS  PubMed  Google Scholar 

  41. Rohrbach D, Lakshmanan S, Peyrin F, Langer M, Gerisch A, Grimal Q, et al. Spatial distribution of tissue level properties in a human femoral cortical bone. J Biomech. 2012;45:2264–70. The first systematic SAM-SRμCT study that measured the tissue scale stiffness tensor, degree of mineralization, and cortical porosity in the human femoral shaft.

    Article  PubMed  Google Scholar 

  42. Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R. The bone mineralization density distribution as a fingerprint of the mineralization process. Bone. 2007;40:1308–19.

    Article  CAS  PubMed  Google Scholar 

  43. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42:456–66.

    Article  CAS  PubMed  Google Scholar 

  44. Raum K, Cleveland RO, Peyrin F, Laugier P. Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol. 2006;51:747–58.

    Article  PubMed  Google Scholar 

  45. Raum K, Leguerney I, Chandelier F, Talmant M, Saied A, Peyrin F, et al. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation muCT. Phys Med Biol. 2006;51:733–46.

    Article  CAS  PubMed  Google Scholar 

  46. Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, et al. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci U S A. 2011;108:14416–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12:6–15.

    Article  CAS  PubMed  Google Scholar 

  48. Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. 1993;14:103–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sobelman OS, Gibeling JC, Stover SM, Hazelwood SJ, Yeh OC, Shelton DR, et al. Do micro-cracks decrease or increase fatigue resistance in cortical bone? J Biomech. 2004;37:1295–303.

    Article  CAS  PubMed  Google Scholar 

  50. Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18:189–200.

    Article  CAS  PubMed  Google Scholar 

  51. Leng H, Reyes MJ, Dong XN, Wang X. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone. Bone. 2013;55:288–91.

    Article  CAS  PubMed  Google Scholar 

  52. Wysolmerski JJ. Osteocytic osteolysis: time for a second look? Bonekey Rep. 2012;1:229.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E. A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone. 2013;54:8–20.

    Article  CAS  PubMed  Google Scholar 

  54. Grimal Q, Raum K, Gerisch A, Laugier P. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech Model Mechanobiol. 2011;10:925–37.

    Article  PubMed  Google Scholar 

  55. Grimal Q, Raum K, Gerisch A, Laugier P. Derivation of the mesoscopic elasticity tensor of cortical bone from quantitative impedance images at the micron scale. Comput Methods Biomech Biomed Engin. 2008;11:147–57.

    Article  PubMed  Google Scholar 

  56. Parnell WJ, Grimal Q. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization. J R Soc Interface. 2009;6:97–109.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Grimal Q, Rus G, Parnell WJ, Laugier P. A two-parameter model of the effective elastic tensor for cortical bone. J Biomech. 2011;44:1621–5.

    Article  PubMed  Google Scholar 

  58. Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28:313–24.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Lakshmanan S, Bodi A, Raum K. Assessment of anisotropic tissue elasticity of cortical bone from high-resolution, angular acoustic measurements. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:1560–70.

    Article  PubMed  Google Scholar 

  60. Raum K. Microelastic imaging of bone. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1417–31.

    Article  CAS  PubMed  Google Scholar 

  61. Saied A, Raum K, Leguerney I, Laugier P. Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone. Bone. 2008;43:187–94.

    Article  CAS  PubMed  Google Scholar 

  62. Rupin F, Saied A, Dalmas D, Peyrin F, Haupert S, Raum K, et al. Assessment of microelastic properties of bone. using scanning acoustic microscopy: a face-to-face comparison with nanoindentation. Jpn J Appl Phys. 2009;48.

  63. Malo MK, Rohrbach D, Isaksson H, Toyras J, Jurvelin JS, Tamminen IS, et al. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone. 2013;53:451–8. An experimental SAM study showing the variability and associations of microscale tissue elastic properties and intracortical porosity in men with respect to age in proximal femur shaft and neck regions.

    Article  CAS  PubMed  Google Scholar 

  64. Chen PY, Toroian D, Price PA, McKittrick J. Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int. 2011;88:351–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Grimal Q, Rohrbach D, Grondin J, Barkmann R, Gluer CC, Raum K, et al. Modeling of femoral neck cortical bone. for the numerical simulation of ultrasound propagation. Ultrasound Med Biol. 2014. doi:10.1016/j.ultrasmedbio.2013.11.010.

    PubMed  Google Scholar 

  66. Rohde K, Rohrbach D, Gluer CC, Laugier P, Grimal Q, Raum K, et al. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61:302–13.

    Article  PubMed  Google Scholar 

  67. Potsika VT, Grivas KN, Protopappas VC, Vavva MG, Raum K, Rohrbach D, et al. Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones. Ultrasonics. 2013. doi:10.1016/j.ultras.2013.09.002.

  68. Hofmann T, Heyroth F, Meinhard H, Franzel W, Raum K. Assessment of composition and anisotropic elastic properties of secondary osteon lamellae. J Biomech. 2006;39:2284–94.

    Article  Google Scholar 

  69. Migliori A, Sarrao JL, Visscher WM, Bell TM, Lei M, Fisk Z, et al. Resonant Ultrasound spectroscopic techniques for measurement of the elastic-moduli of solids. Physica B. 1993;183:1–24.

    Article  CAS  Google Scholar 

  70. Migliori A, Maynard JD. Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Rev Sci Instrum. 2005;76. doi:10.1063/1.2140494.

  71. Bernard S, Grimal Q, Laugier P. Resonant ultrasound spectroscopy for viscoelastic characterization of anisotropic attenuative solid materials. J Acoust Soc Am. 2014;in press.

  72. Bernard S, Grimal Q, Laugier P. Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy. J Mech Behav Biomed Mater. 2013;18:12–9. The first study showing that resonant ultrasound spectroscopy (RUS) can be applied to measure the full stiffness tensor of small bone specimens with high precision. This is an important milestone as RUS may be used in future systematic routine measurements of the mesoscale stiffness tensor in cortical bone samples for basic bone research, small animal phenotyping, etc.

    Article  PubMed  Google Scholar 

  73. Siegel IM, Anast GT, Fields T. The determination of fracture healing by measurement of sound velocity across the fracture site. Surg Gynecol Obstet. 1958;107:327–32.

    CAS  PubMed  Google Scholar 

  74. Foldes AJ, Rimon A, Keinan DD, Popovtzer MM. Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone. 1995;17:363–7.

    Article  CAS  PubMed  Google Scholar 

  75. Moilanen P. Ultrasonic guided waves in bone. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1277–86.

    Article  PubMed  Google Scholar 

  76. Talmant M, Kolta S, Roux C, Haguenauer D, Vedel I, Cassou B, et al. In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment. Ultrasound Med Biol. 2009;35:912–9.

    Article  CAS  PubMed  Google Scholar 

  77. Bossy E, Talmant M, Peyrin F, Akrout L, Cloetens P, Laugier P. An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res. 2004;19:1548–56.

    Article  PubMed  Google Scholar 

  78. Egorov V, Tatarinov A, Sarvazyan N, Wood R, Magidenko L, Amin S, et al. Osteoporosis detection in postmenopausal women using axial transmission multi-frequency bone ultrasonometer: clinical findings. Ultrasonics. 2013. doi:10.1016/j.ultras.2013.08.017.

  79. Sarvazyan A, Tatarinov A, Egorov V, Airapetian S, Kurtenok V, Gatt Jr CJ. Application of the dual-frequency ultrasonometer for osteoporosis detection. Ultrasonics. 2009;49:331–7.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Tatarinov A, Egorov V, Sarvazyan N, Sarvazyan A. Multi-frequency axial transmission bone ultrasonometer. Ultrasonics. 2013. doi:10.1016/j.ultras.2013.09.025.

  81. Lefebvre F, Deblock Y, Campistron P, Ahite D, Fabre JJ. Development of a new ultrasonic technique for bone and biomaterials in vitro characterization. J Biomed Mater Res. 2002;63:441–6.

    Article  CAS  PubMed  Google Scholar 

  82. Moilanen P, Nicholson PH, Karkkainen T, Wang Q, Timonen J, Cheng S. Assessment of the tibia using ultrasonic guided waves in pubertal girls. Osteoporos Int. 2003;14:1020–7.

    Article  CAS  PubMed  Google Scholar 

  83. Protopappas VC, Kourtis IC, Kourtis LC, Malizos KN, Massalas CV, Fotiadis DI. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones. J Acoust Soc Am. 2007;121:3907–21.

    Article  PubMed  Google Scholar 

  84. Talmant M, Foiret J, Minonzio JG. Guided waves in cortical bone. In: Laugier P, Haiat G, editors. Bone quantitative ultrasound. Dordrecht: Springer Science+Business Media B.V; 2011. p. 147–80.

    Chapter  Google Scholar 

  85. Moilanen P, Talmant M, Bousson V, Nicholson PH, Cheng S, Timonen J, et al. Ultrasonically determined thickness of long cortical bones: two-dimensional simulations of in vitro experiments. J Acoust Soc Am. 2007;122:1818.

    Article  PubMed  Google Scholar 

  86. Moilanen P, Talmant M, Nicholson PH, Cheng S, Timonen J, Laugier P. Ultrasonically determined thickness of long cortical bones: three-dimensional simulations of in vitro experiments. J Acoust Soc Am. 2007;122:2439–45.

    Article  PubMed  Google Scholar 

  87. Moilanen P, Nicholson PH, Kilappa V, Cheng S, Timonen J. Assessment of the cortical bone thickness using ultrasonic guided waves: modelling and in vitro study. Ultrasound Med Biol. 2007;33:254–62.

    Article  PubMed  Google Scholar 

  88. Foiret J, Minonzio JG, Talmant M, Laugier P. Cortical bone quality assessment using quantitative ultrasound on long bones. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1121–4.

    PubMed  Google Scholar 

  89. Moilanen P, Maatta M, Kilappa V, Xu L, Nicholson PH, Alen M, et al. Discrimination of fractures by low-frequency axial transmission ultrasound in postmenopausal females. Osteoporos Int. 2013;24:723–30.

    Article  CAS  PubMed  Google Scholar 

  90. Kilappa V, Moilanen P, Xu L, Nicholson PH, Timonen J, Cheng S. Low-frequency axial ultrasound velocity correlates with bone mineral density and cortical thickness in the radius and tibia in pre- and postmenopausal women. Osteoporos Int. 2011;22:1103–13.

    Article  CAS  PubMed  Google Scholar 

  91. Minonzio JG, Talmant M, Laugier P. Guided wave phase velocity measurement using multi-emitter and multi-receiver arrays in the axial transmission configuration. J Acoust Soc Am. 2010;127:2913–9.

    Article  PubMed  Google Scholar 

  92. Daugschies M, Rohde K, Gluer CC, Barkmann R. The preliminary evaluation of a 1 MHz ultrasound probe for measuring the elastic anisotropy of human cortical bone. Ultrasonics. 2014;54:4–10.

    Article  CAS  PubMed  Google Scholar 

  93. Barkmann R, Laugier P, Moser U, Dencks S, Padilla F, Haiat G, et al. A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. Bone. 2007;40:37–44.

    Article  CAS  PubMed  Google Scholar 

  94. Barkmann R, Laugier P, Moser U, Dencks S, Klausner M, Padilla F, et al. In vivo measurements of ultrasound transmission through the human proximal femur. Ultrasound Med Biol. 2008;34:1186–90.

    Article  PubMed  Google Scholar 

  95. Barkmann R, Laugier P, Moser U, Dencks S, Klausner M, Padilla F, et al. A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1197–204.

    Article  PubMed  Google Scholar 

  96. Barkmann R, Dencks S, Laugier P, Padilla F, Brixen K, Ryg J, et al. Femur ultrasound (FemUS)–first clinical results on hip fracture discrimination and estimation of femoral BMD. Osteoporos Int. 2010;21:969–76. One of the most significant recent technological developments in bone QUS: the femur scanner to measure the hip.

    Article  CAS  PubMed  Google Scholar 

  97. Grimal Q, Grondin J, Guerard S, Barkmann R, Engelke K, Gluer CC, et al. Quantitative ultrasound of cortical bone in the femoral neck predicts femur strength: results of a pilot study. J Bone Miner Res. 2013;28:302–12. An experimental study showing the feasibility of measuring circumferential waves propating in the femoral neck. The results suggest that the measured waveform conveys important information of the neck biomechanical competence. This study and Barkman’s paper potentially opens new research routes for the future of clinical QUS.

    Article  PubMed  Google Scholar 

  98. Barkmann R, Lusse S, Stampa B, Sakata S, Heller M, Gluer CC. Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo. Osteoporos Int. 2000;11:745–55.

    Article  CAS  PubMed  Google Scholar 

  99. Sakata S, Barkmann R, Lochmuller EM, Heller M, Gluer CC. Assessing bone status beyond BMD: evaluation of bone geometry and porosity by quantitative ultrasound of human finger phalanges. J Bone Miner Res. 2004;19:924–30.

    Article  PubMed  Google Scholar 

  100. Rohde K, Rohrbach D, Glueer CC, Laugier P, Grimal Q, Raum K, et al. Influence of porosity, pore size and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;in press.

  101. Nauleau P, Cochard E, Minonzio JG, Grimal Q, Laugier P, Prada C. Characterization of circumferential guided waves in a cylindrical cortical bone-mimicking phantom. J Acoust Soc Am. 2012;131:EL289–94.

    Article  PubMed  Google Scholar 

  102. Nauleau P, Grimal Q, Minonzio JG, Laugier P, Prada C. Circumferential guided wave measurements of a cylindrical fluid-filled femoral neck mimicking phantom. J Acoust Soc Am. 2014;in press.

Download references

Acknowledgements

K. Raum received funding from the Deutsche Forschungsgemeinschaft within the priority program SPP1420 "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials" (grant RA 1380/7). Q. Grimal received grants from Agence Nationale de la Recherche (French minister for research) during the conduct of the study. P. Laugier is one of the co-founder of Azalee, a spin-off company to develop and commercialize a technology using ultrasound to measure cortical bone and assess its structural and mechanical properties. All authors are associated with the European Associated Laboratory “Ultrasound Based Assessment of Bone” (ULAB).

Compliance with Ethics Guidelines

Conflict of Interest

K. Raum, Q. Grimal, P. Varga, R. Barkmann, CC Glüer, and P. Laugier declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Raum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raum, K., Grimal, Q., Varga, P. et al. Ultrasound to Assess Bone Quality. Curr Osteoporos Rep 12, 154–162 (2014). https://doi.org/10.1007/s11914-014-0205-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0205-4

Keywords

Navigation