Skip to main content
Log in

Low-frequency axial ultrasound velocity correlates with bone mineral density and cortical thickness in the radius and tibia in pre- and postmenopausal women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Axial transmission velocity of a low-frequency first arriving signal (V LF) was assessed in the radius and tibia of 254 females, and compared to site-matched pQCT measurements. V LF best correlated with cortical BMD, but significantly also with subcortical BMD and cortical thickness. Correlations were strongest for the radius in postmenopausal females.

Introduction

Ultrasonic low-frequency (LF; 0.2–0.4 MHz) axial transmission, based on the first arriving signal (FAS), provides enhanced sensitivity to thickness and endosteal properties of cortical wall of the radius and tibia compared to using higher frequencies (e.g., 1 MHz). This improved sensitivity of the LF approach has not yet been clearly confirmed by an in vivo study on adult subjects. The aims of the present study were to evaluate the extent to which LF measurements reflect cortical thickness and bone mineral density, and to assess whether an individual LF measurement can provide a useful estimate for these bone properties.

Methods

Velocity of the LF FAS (V LF) was assessed in the radius and tibia shaft by a new ultrasonometer (CVRMS = 0.5%) in a cross-sectional study involving 159 premenopausal (20–58 years) and 95 postmenopausal females (45–88 years). Site-matched volumetric total bone mineral density (BMD), cortical bone mineral density (CBMD), subcortical bone mineral density (ScBMD) and cortical thickness (CTh) were assessed using pQCT.

Results

For the postmenopausal females, V LF correlated best with CBMD in the radius (R = 0.850, p < 0.001), but significantly also with ScBMD and CTh (R = 0.759 and R = 0.761, respectively; p < 0.001). Similar trends but weaker correlations were observed for the tibia and for the premenopausal women.

Conclusions

The LF assessment, with an optimal excitation frequency, thus provided good prediction of both cortical thickness and subcortical bone material properties. These results suggest that the LF approach does indeed have enhanced sensitivity for detecting osteoporotic changes that occur deep in the endosteal bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barkmann R, Kantorovich E, Singal C, Hans D, Genant HK, Heller M, Gluer CC (2000) A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination. J Clin Densitom 3(1):1–7

    Article  PubMed  CAS  Google Scholar 

  2. Bauer DC, Glüer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 157(6):629–634

    Article  PubMed  CAS  Google Scholar 

  3. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    PubMed  CAS  Google Scholar 

  4. Bossy E, Talmant M, Laugier P (2002) Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study. J Acoust Soc Am 112(1):297–307

    Article  PubMed  Google Scholar 

  5. Bossy E, Talmant M, Laugier P (2004) Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. J Acoust Soc Am 115(5 Pt 1):2314–2324

    Article  PubMed  Google Scholar 

  6. Bossy E, Talmant M, Defontaine M, Patat F, Laugier P (2004) Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials. IEEE Trans Ultrason Ferroelectr Freq Control 51(1):71–79

    Article  PubMed  Google Scholar 

  7. Bossy E, Talmant M, Peyrin F, Akrout L, Cloetens P, Laugier P (2004) An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res 19(9):1548–1556

    Article  PubMed  Google Scholar 

  8. Camus E, Talmant M, Berger G, Laugier P (2000) Analysis of the axial transmission technique for the assessment of skeletal status. J Acoust Soc Am 108(6):3058–3065

    Article  PubMed  CAS  Google Scholar 

  9. Foldes AJ, Rimon A, Keinan DD, Popovtzer MM (1995) Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone 17(4):363–367

    Article  PubMed  CAS  Google Scholar 

  10. Gluer CC (2008) A new quality of bone ultrasound research. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1524–1528

    Article  PubMed  CAS  Google Scholar 

  11. Guglielmi G, Njeh CF, de Terlizzi F, De Serio DA, Scillitani A, Cammisa M, Fan B, Lu Y, Genant HK (2003) Phalangeal quantitative ultrasound, phalangeal morphometric variables, and vertebral fracture discrimination. Calcif Tissue Int 72(4):469–477

    Article  PubMed  CAS  Google Scholar 

  12. Haïat G, Naili S, Grimal Q, Talmant M, Desceliers C, Soize C (2009) Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission. J Acoust Soc Am 125(6):4043–4052

    Article  PubMed  Google Scholar 

  13. Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348(9026):511–514

    Article  PubMed  CAS  Google Scholar 

  14. Hans D, Genton L, Allaoua S, Pichard C, Slosman DO (2003) Hip fracture discrimination study: QUS of the radius and the calcaneum. J Clin Densitom 6(2):163–172

    Article  PubMed  Google Scholar 

  15. Hartl F, Tyndall A, Kraenzlin M, Bachmeier C, Gückel C, Senn U, Hans D, Theiler R (2002) Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: results of the Basel Osteoporosis Study. J Bone Miner Res 17(2):321–330

    Article  PubMed  CAS  Google Scholar 

  16. Hollaender R, Hartl F, Krieg M-A, Tyndall A, Geuckel C, Buitrago-Tellez C, Manghani M, Kraenzlin M, Theiler R, Hans D (2009) Prospective evaluation of risk of vertebral fractures using quantitative ultrasound measurements and bone mineral density in a population-based sample of postmenopausal women: results of the Basel Osteoporosis Study. Ann Rheum Dis 68:391–396

    Article  PubMed  CAS  Google Scholar 

  17. Huang C, Ross PD, Yates AJ, Walker RE, Imose K, Emi K, Wasnich RD (1998) Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 63(5):380–384

    Article  PubMed  CAS  Google Scholar 

  18. Knapp KM, Blake GM, Spector TD, Fogelman I (2004) Can the WHO definition of osteoporosis be applied to multi-site axial transmission quantitative ultrasound? Osteoporos Int 15(5):367–374

    Article  PubMed  CAS  Google Scholar 

  19. Lee SC, Coan BS, Bouxsein ML (1997) Tibial ultrasound velocity measured in situ predicts the material properties of tibial cortical bone. Bone 21(1):119–125

    Article  PubMed  CAS  Google Scholar 

  20. Lowet G, Van der Perre G (1998) Ultrasound velocity measurement in long bones: measurement method and simulation of ultrasound wave propagation. Ultrasonics 36:147–154

    Article  Google Scholar 

  21. Moayyeri A, Kaptoge S, Dalzell N, Binghan S, Luben RN, Wareham NJ, Reeve J, Khaw KL (2009) Is QUS or DXA better for predicting the 10-year absolute risk of fracture? J Bone Miner Res 24(7):1319–1325

    Article  PubMed  Google Scholar 

  22. Moilanen P, Nicholson PH, Kärkkäinen T, Wang Q, Timonen J, Cheng S (2003) Assessment of the tibia using ultrasonic guided waves in pubertal girls. Osteoporos Int 14(12):1020–1027

    Article  PubMed  CAS  Google Scholar 

  23. Moilanen P, Kilappa V, Nicholson PH, Timonen J, Cheng S (2004) Thickness sensitivity of ultrasound velocity in long bone phantoms. Ultrasound Med Biol 30(11):1517–21

    Article  PubMed  Google Scholar 

  24. Moilanen P, Nicholson PH, Kilappa V, Cheng S, Timonen J (2007) Assessment of the cortical bone thickness using ultrasonic guided waves: modeling and in vitro study. Ultrasound Med Biol 33(2):254–262

    Article  PubMed  Google Scholar 

  25. Muller M, Moilanen P, Bossy E, Nicholson P, Kilappa V, Timonen J, Talmant M, Cheng S, Laugier P (2005) Comparison of three ultrasonic axial transmission methods for bone assessment. Ultrasound Med Biol 31(5):633–642

    Article  PubMed  CAS  Google Scholar 

  26. Muller M, Mitton D, Moilanen P, Bousson V, Talmant M, Laugier P (2008) Prediction of bone mechanical properties using QUS and pQCT: Study of the human distal radius. Med Eng Phys 30(6):761–767

    Article  PubMed  CAS  Google Scholar 

  27. Määttä M, Moilanen P, Nicholson P, Cheng S, Timonen J, Jämsä T (2009) Correlation of tibial low-frequency ultrasound velocity with femoral radiographic measurements and BMD in elderly women. Ultrasound Med Biol 35(6):903–911

    Article  PubMed  Google Scholar 

  28. Nguyen TV, Center JR, Eisman JA (2004) Bone mineral density-independent association of quantitative ultrasound measurements and fracture risk in women. Osteoporos Int 15(12):942–947

    Article  PubMed  Google Scholar 

  29. Nicholson PHF, Moilanen P, Kärkkäinen T, Timonen J, Cheng S (2002) Guided ultrasonic waves in long bones: modelling, experiment and in vivo application. Physiol Meas 23:755–768

    Article  PubMed  Google Scholar 

  30. Nicholson PHF (2008) Ultrasound and the biomechanical competence of bone. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1539–1545

    Article  PubMed  CAS  Google Scholar 

  31. Njeh CF, Hans D, Wu C, Kantorovich E, Sister M, Fuerst T, Genant HK (1999) An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Med Eng Phys 21(9):651–659

    Article  PubMed  CAS  Google Scholar 

  32. Njeh CF, Saeed I, Grigorian M, Kendler DL, Fan B, Shepherd J, McClung M, Drake WM, Genant HK (2001) Assessment of bone status using speed of sound at multiple anatomical sites. Ultrasound Med Biol 27(10):1337–1345

    Article  PubMed  CAS  Google Scholar 

  33. Pham T-L, Talmant M, Laugier P (2008) How does ultrasound bidirectional axial transmission reflect geometry of long bones? IEEE International Ultrasonics Symposium Proceedings 229–232

  34. Prevrhal S, Fuerst T, Fan B, Njeh C, Hans D, Uffmann M, Srivastav S, Genant HK (2001) Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 12(1):28–34

    Article  PubMed  CAS  Google Scholar 

  35. Raum K, Leguerney I, Chandelier F, Bossy E, Talmant M, Saied A, Peyrin F, Laugier P (2005) Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol 31(9):1225–1235

    Article  PubMed  Google Scholar 

  36. Raum K, Cleveland RO, Peyrin F, Laugier P (2006) Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol 51(3):747–758

    Article  PubMed  Google Scholar 

  37. Sievänen H, Cheng S, Ollikainen S, Uusi-Rasi K (2001) Ultrasound velocity and cortical bone characteristics in vivo. Osteoporos Int 12(5):399–405

    Article  PubMed  Google Scholar 

  38. Snedecor GW (1976) Statistical methods, 6th edn. The Iowa State University Press, Ames, Iowa, USA

    Google Scholar 

  39. Stegman M, Heaney R, Travers-Gustafson D, Leist J (1995) Cortical ultrasound velocity as an indicator of bone status. Osteoporos Int 5:349–353

    Article  PubMed  CAS  Google Scholar 

  40. Ta D, Wang W, Wang Y, Le LH, Zhou Y (2009) Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone. Ultrasound Med Biol 35(4):641–652

    Article  PubMed  Google Scholar 

  41. Talmant M, Kolta S, Roux Ch, Haguenauer D, Vedel I, Cassou B, Bossy E, Laugier P (2008) In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment. Ultrasound Med Biol 35(6):912–919

    Article  Google Scholar 

  42. Tatarinov A, Sarvazyan N, Sarvazyan A (2005) Use of multiple acoustic wave modes for assessment of long bones: model study. Ultrasonics 43(8):672–680

    Article  PubMed  Google Scholar 

  43. Wang Q, Nicholson PHF, Timonen J, Alen M, Moilanen P, Suominen H, Cheng S (2008) Monitoring bone growth using quantitative ultrasound in comparison with DXA and pQCT. J Clin Densitom 11(2):295–301

    Article  PubMed  Google Scholar 

  44. Weiss M, Ben-Shlomo AB, Hagag P, Rapoport M (2000) Reference database for bone speed of sound measurement by a novel quantitative multi-site ultrasound device. Osteoporos Int 11(8):688–696

    Article  PubMed  CAS  Google Scholar 

  45. Wüster C, Albanese C, De Aloysio D, Duboeuf F, Gambacciani M, Gonnelli S, Glüer CC, Hans D, Joly J, Reginster JY, De Terlizzi F, Cadossi R (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study Group. J Bone Miner Res 15(8):1603–1614

    Article  PubMed  Google Scholar 

  46. Xu L, Nicholson PHF, Wang Q, Alen M, Cheng S (2009) Bone and muscle development during puberty in girls: a seven-year longitudinal study. J Bone Miner Res 24(10):1693–1698

    Article  PubMed  Google Scholar 

  47. Zioupos P, Currey JD (1998) Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22(1):57–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Finnish Funding Agency for Technology and Innovation (TEKES, projects 40462/05 and 40403/06) and the Academy of Finland (projects 115621 and 133183). The authors would also like to thank Ms. Shumei Cheng, Ms. Arja Lyytikäinen, and Ms. Heli Vertamo for their valuable contributions to this study.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kilappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilappa, V., Moilanen, P., Xu, L. et al. Low-frequency axial ultrasound velocity correlates with bone mineral density and cortical thickness in the radius and tibia in pre- and postmenopausal women. Osteoporos Int 22, 1103–1113 (2011). https://doi.org/10.1007/s00198-010-1273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1273-7

Keywords

Navigation