Skip to main content
Log in

Recent developments in trabecular bone characterization using ultrasound

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Currently available quantitative ultrasound technologies to assess cancellous bone are based on the measurements in transmission of speed of sound or slope of frequencydependent attenuation (so called broadband ultrasonic attenuation). These two parameters are now considered as surrogate markers of site-matched bone mineral density. The ability of ultrasound techniques to provide non-bone mineral density-related bone properties (eg, microstructure) has not been clearly demonstrated yet. This is mainly because of two factors: a lack of understanding of ultrasound propagation with clear identification of the different underlying physical interactions; and the difficulty of performing experiments because of the limited sample size, the large number of statistical relationships to be tested with multiple variables, and the usual strong covariance observed between bone quantity and microarchitecture. The aim of this paper is to review the most recent development in the field of ultrasound characterization of trabecular bone. We present research work on ultrasound backscatter and how it could be used to estimate microarchitectural properties independently of bone quantity, and the first promising results obtained for the estimation of trabecular thickness. We then introduce numeric simulations of wave propagation through trabecular microarchitecture and show how it could contribute to elucidate and better characterize the physical underlying physics and result in more predictive models. These innovative acquisition schemes and the possibility of virtual experiments should altogether contribute to rapid advancement of ultrasonic bone characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Njeh CF, Hans D, Fuerst T, et al.: Quantitative ultrasound: In Assessment of Osteoporosis and Bone Status. London: Martin Dunitz Ltd., 1999.

    Google Scholar 

  2. Gordon CL, Webber CE, Christoforou N, Nahmias C: In vivo assessment of trabecular bone structure at the distal radius from high-resolution magnetic resonance images. Med Phys 1997, 24:585–593.

    Article  PubMed  CAS  Google Scholar 

  3. Link TM, Majumdar S, Augat P, et al.: In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998, 13:1175–1182.

    Article  PubMed  CAS  Google Scholar 

  4. Majumdar S: Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging 2002, 13:323–334.

    Article  PubMed  Google Scholar 

  5. Majumdar S, Genant HK, Grampp S, et al.: Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 1997, 12:111–118.

    Article  PubMed  CAS  Google Scholar 

  6. Muller R, Hildebrand T, Hauselmann HJ, Ruegsegger P: In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res 1996, 11:1745–1750.

    PubMed  CAS  Google Scholar 

  7. Benhamou CL, Lespessailles E, Jacquet G, et al.: Fractal organization of trabecular bone images on calcaneus radiographs. J Bone Miner Res 1994, 9:1909–1918.

    Article  PubMed  CAS  Google Scholar 

  8. Caligiuri P, Giger ML, Favus M: Multifractal radiographic analysis of osteoporosis. Med Phys 1994, 21:503–508.

    Article  PubMed  CAS  Google Scholar 

  9. Cortet B, Dubois P, Boutry N, et al.: Image analysis of the distal radius trabecular network using computed tomography. Osteoporos Int 1999, 9:410–419.

    Article  PubMed  CAS  Google Scholar 

  10. Lespessailles E, Jacquet G, Harba R, et al.: Anisotropy measurements obtained by fractal analysis of trabecular bone at the calcaneus and radius. Rev Rhum Engl Ed 1996, 63:337–343.

    PubMed  CAS  Google Scholar 

  11. Benhamou CL, Poupon S, Lespessailles E, et al.: Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 2001, 16:697–704.

    Article  PubMed  CAS  Google Scholar 

  12. Tavakoli MB, Evans JA: The effect of bone structure on ultrasonic attenuation and velocity. Ultrasonics 1992, 30:389–395.

    Article  PubMed  CAS  Google Scholar 

  13. Gluer CC, Wu CY, Genant HK: Broadband ultrasound attenuation signals depends on trabecular orientation: an in vitro study. Osteoporos Int 1993, 3:185–191.

    Article  PubMed  CAS  Google Scholar 

  14. Gluer C, Wu CY, Jergas M, et al.: Three quantitative ultrasound parameters reflect bone structure. Calcif Tiss Int 1994, 55:46–52.

    Article  CAS  Google Scholar 

  15. Nicholson PHF, Haddaway MJ, Davie MWJ: The dependence of ultrasonic properties on orientation in human vertebral bone. Phys Med Biol 1994, 39:1013–1024.

    Article  PubMed  CAS  Google Scholar 

  16. Strelitzki R, Evans JA, Clarke AJ: The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material. Osteoporos Int 1997, 7:370–375.

    Article  PubMed  CAS  Google Scholar 

  17. Langton CM, Whitehead MA, Haire TJ, Hodgskinson R: Fractal dimension predicts broadband ultrasound attenuation in stereolithography models of cancellous bone. Phys Med Biol 1998, 43:467–471.

    Article  PubMed  CAS  Google Scholar 

  18. Nicholson PH, Muller R, Lowet G, et al.: Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone? Bone 1998, 23:425–431.

    Article  PubMed  CAS  Google Scholar 

  19. Wu C, Gluer C, Lu Y, et al.: Ultrasound characterization of bone demineralization. Calcif Tissue Int 1998, 62:133–139.

    Article  PubMed  CAS  Google Scholar 

  20. Hans D, Wu C, Njeh CF, et al.: Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity. Calcif Tissue Int 1999, 64:18–23.

    Article  PubMed  CAS  Google Scholar 

  21. Hodgskinson R, Njeh CF, Currey JD, Langton CM: The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro. Bone 1997, 21:183–190.

    Article  PubMed  CAS  Google Scholar 

  22. Njeh CF, Kuo CW, Langton CM, et al.: Prediction of human femoral bone strength using ultrasound velocity and BMD: an in vitro study. Osteoporos Int 1997, 7:471–477.

    Article  PubMed  CAS  Google Scholar 

  23. Wear KA: Anisotropy of ultrasonic backscatter and attenuation from human calcaneus: implications for relative roles of absorption and scattering in determining attenuation. J Acoust Soc Am 2000, 107:3474–3479.

    Article  PubMed  CAS  Google Scholar 

  24. Hausler KD, Rich PA, Smith PC, Barry EB: Relationships between static histomorphometry and ultrasound in the human calcaneus. Calcif Tissue Int 1999, 64:477–480.

    Article  PubMed  CAS  Google Scholar 

  25. Langton CM, Njeh CF, Hodgskinson R, Currey JD: Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation. Bone 1996, 18:495–503.

    Article  PubMed  CAS  Google Scholar 

  26. Nicholson PHF, Muller R, Cheng XG, et al.: Quantitative ultrasound and trabecular architecture in the human calcaneus. J Bone Miner Res 2001, 16:1886–1892.

    Article  PubMed  CAS  Google Scholar 

  27. Chaffai S, Peyrin F, Nuzzo S, et al.: Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. Bone 2002, 30:229–237.

    Article  PubMed  CAS  Google Scholar 

  28. Wear KA: Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment. J Acoust Soc Am 1999, 106:3659–3664.

    Article  PubMed  CAS  Google Scholar 

  29. Padilla F, Peyrin F, Laugier P: Prediction of backscatter coefficient in trabecular bones using a numerical model of three-dimensional microstructure. J Acoust Soc Am 2003, 113:1122–1129.

    Article  PubMed  Google Scholar 

  30. Jenson F, Padilla F, Laugier P: Prediction of frequencydependent ultrasonic backscatter in cancellous bone using statistical weak scattering model. Ultrasound Med Biol 2003, 29:455–464. This study illustrates the possibility of data inversion to estimate microarchitectural features from ultrasound experiments.

    Article  PubMed  Google Scholar 

  31. Ulrich D, van Rietbergen B, Laib A, Ruegsegger P: The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 1999, 25:55–60.

    Article  PubMed  CAS  Google Scholar 

  32. Pereira WC, Bridal SL, Coron A, Laugier P: Singular spectrum analysis applied to backscattered ultrasound signals from in vitro human cancellous bone specimens. IEEE Trans Ultrason Ferroelectr Freq Control 2004, 51:302–312. In this study, the potential for ultrasound measurements to estimate trabecular spacing is illustrated.

    Article  PubMed  Google Scholar 

  33. Bossy E, Talmant M, Laugier P: Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. J Acoust Soc Am 2004, 115:2314–2324. In this paper, the numeric simulation is applied to actual bone structures. It is shown how simulations provide a valuable tool to the study ultrasound propagation in bone and how it should finally allow a comprehensive understanding of physical phenomena involved.

    Article  PubMed  Google Scholar 

  34. Bossy E, Talmant M, Laugier P: Numerical simulation of wave propagation in cancellous bone. J Acoust Soc Am 2004, 116:2478.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla, F., Laugier, P. Recent developments in trabecular bone characterization using ultrasound. Curr Osteoporos Rep 3, 64–69 (2005). https://doi.org/10.1007/s11914-005-0006-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-005-0006-x

Keywords

Navigation