Journal of Food Measurement and Characterization

, Volume 11, Issue 3, pp 1440–1448 | Cite as

Processing, physico-chemical and functional properties of carob molasses and powders

  • Leila Tounsi
  • Sirine Karra
  • Héla Kechaou
  • Nabil Kechaou
Original Paper
  • 228 Downloads

Abstract

Tunisian carob pods were used to produce molasses and powders, which were then analyzed for their composional and functional properties. Molasses were made from carob juice by boiling until three different concentrations (60, 70 and 80 °Brix), while powders were prepared by microwave drying of the by-product derived from carob molasses processing at three power levels (100, 300 and 600 W). Results showed that the processed carob products exhibited interesting characteristics. Carob molasses were characterized by important reducing sugars content, dark color and functional properties with high antioxidant activity and emulsifying capacity. On the other hand, carob powders were characterized by high levels of dietary fibers, brown color and water/oil retention capacity. This study provides, for the first time, a potential valorization of the carob by-product into powder and highlights some functional properties of carob products required by food industry.

Keywords

Carob molasses Boiling concentration Carob powder Microwave drying Functional properties 

Notes

Acknowledgements

The authors would like to thank Confiserie Triki-Le Moulin (CTM, Sfax, Tunisia) for the financial support. They are also very grateful to Mr. Firas Chaker for her precious help to perform some analyzes in the industry.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Afif, N. Ben Fadhel, M.L. Khoudja, M. Boussaid, Genetic diversity in Tunisian Ceratonia siliqua L. (Caesalpinioideae) natural populations. Genet. Resour. Crop. Evol, 53, 1501–1511 (2006)CrossRefGoogle Scholar
  2. 2.
    H.R. Oziyci, N. Tetik, I. Turhan, E. Yatmaz, K. Ucgun, H. Akgul, H. Gubbuk, M. Karhan, Mineral composition of pods and seeds of wild and grafted carob (Ceratonia siliqua L.) fruits. Sci. Hort. 167, 149–152 (2014)CrossRefGoogle Scholar
  3. 3.
    A.K. Yousif, H.M. Alghzawi, Processing and characterization of carob powder. Food Chem. 69, 283–287 (2000)CrossRefGoogle Scholar
  4. 4.
    N. Bouzouita, A. Khaldi, S. Zgoulli, L. Chebil, M. Chaabouni, P. Thonart, The analysis of crude and purified locust bean gum: a comparison of samples from different carob tree populations in Tunisia. Food Chem. 101, 1508–1515 (2007)CrossRefGoogle Scholar
  5. 5.
    K. Dhaouadi, M. Belkhir, I. Akinocho, F. Raboudi, D. Pamies, E. Barrajón, C. Estevan, S. Fattouch, Sucrose supplementation during traditional carob syrup processing affected its chemical characteristics and biological activities. LWT-Food Sci. Technol. 57, 1–8 (2014)CrossRefGoogle Scholar
  6. 6.
    N. Tetik, I. Turhan, H.R. Oziyci, M. Karhan, Determination of d-pinitol in carob syrup. Int. J. Food Sci. Nutr. 62, 572–576 (2011)CrossRefGoogle Scholar
  7. 7.
    F.A. Ayaz, H. Torun, R.H. Glew, Z.D. Bak, L.T. Chuang, J.M. Presly, R. Andrews, Nutrient content of carob pod (Ceratonia siliqua L.) flour prepared commercially and domestically. Plant Food Hum. Nutr. 64, 286–292 (2009)CrossRefGoogle Scholar
  8. 8.
    R. Abi Azar, Milk protein complexation by green carob pods extract: Technological properties of obtained coagulums. PhD thesis, AgroParisTech, France (2007)Google Scholar
  9. 9.
    H. Bozkurt, F. Göğüs, S. Eren, Non-enzymatic browning reactions in boiled grape juice and its models during storage. Food Chem. 64, 89–93 (1999)CrossRefGoogle Scholar
  10. 10.
    O.S. Toker, M. Doganc, N.B. Ersöz, M.T. Yilmaz, Optimization of the content of 5-hydroxymethylfurfural (HMF) formed in some molasses types: HPLC-DAD analysis to determine effect of different storage time and temperature levels. Ind. Crops Prod. 50, 137–144 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Maskan, Production of pomegranate (Punica granatum L.) juice concentrate by various heating methods: colour degradation and kinetic. J. Food Eng. 72, 218–224 (2006)CrossRefGoogle Scholar
  12. 12.
    S. Benjakul, W. Visessanguan, V. Phongkanpai, M. Tanaka, Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince. Food Chem. 90, 231–239 (2005)CrossRefGoogle Scholar
  13. 13.
    D.V. Čepo, A. Mornar, B. Nigovi, D. Kremer, D. Radanovi, I.V. Dragojevi, Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. LWT-Food Sci. Technol. 58, 578–586 (2014)CrossRefGoogle Scholar
  14. 14.
    M.M. Özcan, D. Arslan, H. Gökçalik, Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int. J. Food Sci. Nutr. 58, 652–658 (2007)CrossRefGoogle Scholar
  15. 15.
    AOAC, Official Methods of Analysis of AOAC Intl, 15th edn. (Association of Official Analytical Chemists, Washington, DC, 1995)Google Scholar
  16. 16.
    AFNOR, Produits dérivés des fruits et des légumes, détermination des sucres. (Association Française de Normalisation, Paris, 1970)Google Scholar
  17. 17.
    G.L. Miller, Use of dinitrosalicilic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  18. 18.
    L. Prosky, N.G. Asp, T.F. Schweizer, J.W. De Vries, I. Furda, Determination of insoluble, soluble, and total dietary fibre in food products: Interlaboratory study. J. Assoc. Off. Anal. Chem. 71, 1017–1023 (1988)Google Scholar
  19. 19.
    V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am. J. Enol. Vitic. 16, 144–158 (1965)Google Scholar
  20. 20.
    A. Haddarah, A. Ismail, A. Bassal, T. Hamieh, I. Ioannou, M. Ghoul, Morphological and chemical variability of lebanese carob varieties. Eur. Sci. J 9, 353–369 (2013)Google Scholar
  21. 21.
    M.C. Garau, S. Simal, C. Rossello, A. Femenia, Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chem. 104, 1014–1024 (2007)CrossRefGoogle Scholar
  22. 22.
    K. Yasumatsu, K. Sawada, S. Moritaka, M. Misaki, J. Toda, T. Wada, Whipping and emulsifying properties of soybean products. Agric. Biol. Chem. 36, 719–727 (1972)CrossRefGoogle Scholar
  23. 23.
    N. Turkmen, F. Sari, E.S. Poyrazoglu, Y.S. Velioglu, Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem. 95, 653–657 (2006)CrossRefGoogle Scholar
  24. 24.
    F. Abbès, M.A. Bouaziz, C. Blecker, M. Masmoudi, H. Attia, S. Besbes, Date syrup: effect of hydrolytic enzymes (pectinase/cellulase) on physicochemical characteristics, sensory and functional properties. LWT-Food Sci. Technol. 44, 1827–1834 (2011)CrossRefGoogle Scholar
  25. 25.
    M.A. Martín-Cabrejas, Y. Aguilera, M. Pedrosa, C. Cuadrado, T. Hernández, S. Díaz, The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chem. 114, 1063–1068 (2009)CrossRefGoogle Scholar
  26. 26.
    E.I. Mejia-Meza, J.A. Yanez, N.M. Davies, B. Rasco, F. Younce, C.M. Remsberg, Improving nutritional value of dried blueberries (Vaccinium corymbosum L.) combining microwave-vacuum, hot-air drying and freeze drying technologies. Int. J. Food Eng. 4(5), 1–6 (2008)CrossRefGoogle Scholar
  27. 27.
    W. Qu, Z. Pan, H. Ma, Extraction modeling and activities of antioxidants from pomegranate marc. J. Food Eng. 99, 16–23 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Papagiannopoulos, H.R. Wollseifen, A. Mellenthin, B. Haber, R. Galensa, Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MS. J. Agric. Food Chem. 52, 3784–3791 (2004)CrossRefGoogle Scholar
  29. 29.
    Y. Lario, E. Sendra, J. Garcia-Pérez, C. Fuentes, E. Sayas-Barbera, J. Fernandez-Lopez, J.A. Pérez-Alvarez, Preparation of high dietary fiber powder from lemon juice by-products. Innov. Food Sci. Emerg. 5, 113–117 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Jridi, N. Souissi, M. Ben Salem, M.A. Ayadi, M. Nasri, S. Azabou, Tunisian date (Phoenix dactylifera L.) by-products: Characterization and potential effects on sensory, textural and antioxidant properties of dairy desserts. Food Chem. 188, 8–15 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Alpaslan, M. Hayta, Rheological and sensory properties of pekmez (grape molasses)/tahin (sesame paste) blends. J. Food Eng. 54, 89–93 (2002)CrossRefGoogle Scholar
  32. 32.
    B.S. Wang, L.W. Chang, Z.C. Kang, H.L. Chu, H.M. Tai, M.H. Huang, Inhibitory effects of molasses on mutation and nitric oxide production. Food Chem. 126, 1102–1107 (2011)CrossRefGoogle Scholar
  33. 33.
    J.B. Zhang, N.N. Wu, X.Q. Yang, X.T. He, L.J. Wang, Improvement of emulsifying properties of Maillard reaction products from ß-conglycinin and dextran using controlled enzymatic hydrolysis. Food Hydrocoll. 28, 301–312 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Maskan, F. Göğüş, Effect of sugar on the rheological properties of sunflower oil–water emulsions. J. Food Eng. 43, 173–177 (2000)CrossRefGoogle Scholar
  35. 35.
    Y. Li, F. Lu, C. Luo, Z. Chen, J. Mao, C. Shoemaker, F. Zhong, Functional properties of the Maillard reaction products of rice protein with sugar. Food Chem. 117, 69–74 (2009)CrossRefGoogle Scholar
  36. 36.
    N. Ghanem, D. Mihoubi, N. Kechaou, N. Boudhrioua Mihoubi, Microwave dehydration of three citrus peel cultivars: effect on water and oil retention capacities, color, shrinkage and total phenols content. Ind. Crops Prod. 40, 167–177 (2012)CrossRefGoogle Scholar
  37. 37.
    Q.M. Chen, M.R. Fu, F.L. Yue, Y.Y. Cheng, Effect of superfine grinding on physicochemical properties, antioxidant activity and phenolic content of red rice (Oryza sativa L.). Food Nutr. Sci. 6, 1277–1284 (2015)CrossRefGoogle Scholar
  38. 38.
    J.H. Hu, Y.Q. Chen, D.J. Ni, Effect of superfine grinding on quality and antioxidant property of fine green tea powders. LWT-Food Sci. Technol. 4, 8–12 (2012)CrossRefGoogle Scholar
  39. 39.
    K.X. Zhu, S. Huang, W. Peng, H.F. Qian, H.M. Zhou, Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Res. Int. 43, 943–948 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Elleuch, D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, H. Attia, Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem. 124, 411–421 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Leila Tounsi
    • 1
  • Sirine Karra
    • 1
  • Héla Kechaou
    • 1
  • Nabil Kechaou
    • 1
  1. 1.Groupe de Recherche en Génie des Procédés Agroalimentaires, Laboratoire de Recherche en Mécanique des Fluides Appliquée-Génie des Procédés-Environnement, École Nationale d’Ingénieurs de SfaxUniversité de SfaxSfaxTunisia

Personalised recommendations