Skip to main content
Log in

Valorization of carob by-product for producing an added value powder: characterization and incorporation into Halva formulation

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The by-product generated from carob molasses processing is considered as an excellent source of dietary fiber and may be used as a functional ingredient in food industry. However, it presents a high value of water activity (~ 0.98) which facilitates its microbiological contamination and rapid deterioration. So that, this study provides a solution for the valorization of this by-product and suggests the incorporation of the dried carob by-product into Halva to produce an added value product (Halva with carob powder). Thus, the present work focused on the characterization of carob powder and the optimisation of incorporation percentage of carob powder into Halva formulation. The characterization showed the absence of caffein in carob powder compared to cocoa’s one. Besides, carob and cocoa powders had both a brown color. The former had lower fat and higher sugar contents compared to the latter. The optimization promoted the addition of 5% carob powder into Halva formulation according to the evaluation of hardness, sensory quality and exudative stability. Therefore, the new confectionary product could be considered as a promising nutritious and healthy foodstuff to consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Tounsi, N. Kechaou, Le caroubier (Ceratonia siliqua L.) et ses fruits: descriptions, intérêts et applications. Éditions universitaires européennes, Sarrebruck, Allemagne (2017)

  2. N. Bouzouita, A. Khaldi, S. Zgoulli, L. Chebil, R. Chekki, M. Chaabouni, P. Thonart, The analysis of crude and purified locust bean gum: a comparison of samples from different carob tree populations in Tunisia. Food Chem. 101, 1508–1515 (2007). https://doi.org/10.1016/j.foodchem.2006.03.056

    Article  CAS  Google Scholar 

  3. M. Samil Kök, A comparative study on the compositions of crude and refined locust bean gum: in relation to rheological properties. Carbohydr. Polym. 70, 68–76 (2007). https://doi.org/10.1016/j.carbpol.2007.03.003

    Article  CAS  Google Scholar 

  4. P.A. Dakia, C. Blecker, C. Robert, B. Wathelet, M. Paquot, Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll. 22, 807–818 (2008). https://doi.org/10.1016/j.foodhyd.2007.03.007

    Article  CAS  Google Scholar 

  5. H.E. Batal, A. Hasib, A. Ouatmane, A. Boulli, F. Dehbi, A. Jaouad, Yield and composition of carob bean gum produced from different Moroccan populations of carob (Ceratonia siliqua L.). J Mater. Environ. Sci. 4, 309–314 (2013)

    Google Scholar 

  6. N. Tetik, I. Turhan, H.R. Oziyci, M. Karhan, Determination of D-pinitol in carob syrup. Int. J. Food Sci. Nutr. 62, 572–576 (2011)

    Article  CAS  Google Scholar 

  7. I. Turhan, Optimization of extraction of D-pinitol and phenolics from cultivated and wild types of carob pods using response surface methodology. Int. J. Food Eng. (2011). https://doi.org/10.2202/1556-3758.2300

    Article  Google Scholar 

  8. M.M. Özcan, D. Arslan, H. Gökçalik, Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int. J. Food Sci. Nutr. 58, 652–658 (2007)

    Article  Google Scholar 

  9. M. Sengül, M.F. Ertugay, M. Sengül, Y. Yüksel, Rheological characteristics of carob Pekmez. Int. J. Food Prop. 10, 39–46 (2007)

    Article  Google Scholar 

  10. K. Dhaouadi, M. Belkhir, I. Akinocho, F. Raboudi, D. Pamies, E. Barrajón, C. Estevan, S. Fattouch, Sucrose supplementation during traditional carob syrup processing affected its chemical characteristics and biological activities. LWT - Food Sci. Technol. 57, 1–8 (2014)

    Article  CAS  Google Scholar 

  11. O.S. Toker, M. Dogan, N.B. Ersöz, M.T. Yilmaz, Optimization of the content of 5-hydroxymethylfurfural (HMF) formed in some molasses types : HPLC-DAD analysis to determine effect of different storage time and temperature levels. Ind. Crops Prod. 50, 137–144 (2013). https://doi.org/10.1016/j.indcrop.2013.05.030

    Article  CAS  Google Scholar 

  12. N. Tetik, İ Turhan, M. Karhan, H.R. Öziyci, Characterization of, and 5-hydroxymethylfurfural concentration in carob Pekmez. GIDA 35, 417–422 (2010)

    Google Scholar 

  13. L. Tounsi, I. Ghazala, N. Kechaou, Physicochemical and phytochemical properties of Tunisian carob molasses. J. Food Meas. Charact. 14, 20–30 (2020). https://doi.org/10.1007/s11694-019-00263-9

    Article  Google Scholar 

  14. M.A. Farag, D.M. El-Kersh, Volatiles profiling in Ceratonia siliqua (Carob bean) from Egypt and in response to roasting as analyzed via solid-phase microextraction coupled to chemometrics. J. Adv. Res. 8, 379–385 (2017). https://doi.org/10.1016/j.jare.2017.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. I. Boublenza, H.A. Lazouni, L. Ghaffari, K. Ruiz, A.S. Fabiano-Tixier, F. Chemat, Influence of roasting on sensory, antioxidant, aromas, and physicochemical properties of carob pod powder (Ceratonia siliqua L.). J. Food Qual. (2017). https://doi.org/10.1155/2017/4193672

    Article  Google Scholar 

  16. H.A. Jambi, Effect of rosting process on polyphenols content of carob powder. Life Sci. J. 12, 1–5 (2015). https://doi.org/10.7537/marslsj121215.01

    Article  CAS  Google Scholar 

  17. H. Şahin-Nadeem, A. Topuz, A.A. Kulcan, M. Torun, F. Özdemir, Colour change and weight loss during the roasting process for production of carob powder. Gida 42(3), 252–260 (2017). https://doi.org/10.15237/gida.GD16067

    Article  Google Scholar 

  18. H. Şahin, A. Topuz, M. Pischetsrieder, F. Özdemir, Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur. Food Res. Technol. 230, 155–161 (2009). https://doi.org/10.1007/s00217-009-1152-7

    Article  CAS  Google Scholar 

  19. D. Vitali Čepo, A. Mornar, B. Nigović, D. Kremer, D. Radanović, I. Vedrina Dragojević, Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. LWT - Food Sci. Technol. 58, 578–586 (2014). https://doi.org/10.1016/j.lwt.2014.04.004

    Article  CAS  Google Scholar 

  20. A.K. Yousif, H.M. Alghzawi, Processing and characterization of carob powder. Food Chem. 69, 283–287 (2000)

    Article  CAS  Google Scholar 

  21. F.A. Ayaz, H. Torun, R.H. Glew, Z.D. Bak, L.T. Chuang, J.M. Presley, R. Andrews, Nutrient content of carob pod (Ceratonia siliqua L.) flour prepared commercially and domestically. Plant Foods Hum. Nutr. 64, 286–292 (2009)

    Article  CAS  Google Scholar 

  22. M.K.E. Youssef, M.M. El-Manfaloty, H.M. Ali, Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of carob (Ceratonia siliqua L.). Food Public Health 3, 304–308 (2013). https://doi.org/10.5923/j.fph.20130306.06

    Article  Google Scholar 

  23. G.O. Sigge, L. Lipumbu, T.J. Britz, Proximate composition of carob cultivars growing in South Africa. S. Afr. J. Plant Soil 28, 17–22 (2011). https://doi.org/10.1080/02571862.2011.10640008

    Article  CAS  Google Scholar 

  24. Ł Seczyk, M. Swieca, U. Gawlik-Dziki, Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chem. 194, 637–642 (2016). https://doi.org/10.1016/j.foodchem.2015.08.086

    Article  CAS  PubMed  Google Scholar 

  25. A.Ç. Lar, N. Erol, M.S. Elgün, Effect of carob flour substitution on chemical and functional properties of tarhana. J. Food Process. Preserv. 37, 670–675 (2013). https://doi.org/10.1111/j.1745-4549.2012.00708.x

    Article  CAS  Google Scholar 

  26. M.K.E. Youssef, H.M. Ali, M.M. El-Manfaloty, Nutritional assessment of wheat biscuits and fortified wheat biscuits with carob pod powder (Ceratonia siliqua L.). Food Public Health 3, 336–340 (2013). https://doi.org/10.5923/j.fph.20130306.11

    Article  Google Scholar 

  27. A. Loullis, E. Pinakoulaki, Carob as cocoa substitute: a review on composition, health benefits and food applications. Eur. Food Res. Technol. 244, 959–977 (2018). https://doi.org/10.1007/s00217-017-3018-8

    Article  CAS  Google Scholar 

  28. E.M. Salem, A.A. Ohaad Fahad, Substituting of cacao by carob pod powder in milk chocolate manufacturing. Aust. J. Basic Appl. Sci. 6, 572–578 (2012)

    CAS  Google Scholar 

  29. S. Aydın, Y. Özdemir, Development and characterization of carob flour based functional spread for increasing use as nutritious snack for children. J. Food Qual. 2017, 1–7 (2017). https://doi.org/10.1155/2017/5028150

    Article  CAS  Google Scholar 

  30. N. Srour, H. Daroub, I. Toufeili, A. Olabi, Developing a carob-based milk beverage using different varieties of carob pods and two roasting treatments and assessing their effect on quality characteristics. J. Sci. Food Agric. 96, 3047–3057 (2016). https://doi.org/10.1002/jsfa.7476

    Article  CAS  PubMed  Google Scholar 

  31. T.C. Moreira, Á. da Silva Transfeld, C. Fagundes, S.M.R. Ferreira, L.M.B. Cândido, M. Passos, C.C.H. Krüger, Elaboration of yogurt with reduced level of lactose added of carob (Ceratonia siliqua L.). LWT - Food Sci. Technol. 76, 326–329 (2017). https://doi.org/10.1016/j.lwt.2016.08.033

    Article  CAS  Google Scholar 

  32. A.M. El-Kholy, Impact of carob pods powder on the physical and sensory properties of ice cream. Ismailia J. Dairy Sci. Technol. 2, 7–11 (2015)

    Article  Google Scholar 

  33. L. Román, A. González, T. Espina, M. Gómez, Degree of roasting of carob flour affecting the properties of gluten-free cakes and cookies. J. Food Sci. Technol. 54, 2094–2103 (2017). https://doi.org/10.1007/s13197-017-2649-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. L.S. Barroso, V.R. De Oliveira, A.V. Garcia, D. Doneda, L.A. Ouriques, M.M. Vieira, Physicochemical and sensory evaluation of sandwich cookies made with carob powder nutrition course, Departament of Nutrition, Faculty of Medicine, Agronomy Course, Nutrition Course, Dietary Laboratory Technique, Department of Animal Science. Facult. Adv. J. Food Sci. Technol. 9, 290–295 (2015). https://doi.org/10.19026/ajfst.9.2011

    Article  CAS  Google Scholar 

  35. M. Elleuch, D. Bedigian, B. Maazoun, S. Besbes, C. Blecker, H. Attia, Improving halva quality with dietary fibres of sesame seed coats and date pulp, enriched with emulsifier. Food Chem. 145, 765–771 (2014). https://doi.org/10.1016/j.foodchem.2013.08.085

    Article  CAS  PubMed  Google Scholar 

  36. L. Tounsi, S. Karra, H. Kechaou, N. Kechaou, Processing, physico-chemical and functional properties of carob molasses and powders. J. Food Meas. Charact. 11, 1440–1448 (2017). https://doi.org/10.1007/s11694-017-9523-4

    Article  Google Scholar 

  37. S.M. Nasar-Abbas, Z. e-Huma, T.-H. Vu, M.K. Khan, H. Esbenshade, V. Jayasena, Carob kibble: a bioactive-rich food ingredient: a bioactive-rich food ingredient. Compr. Rev. Food Sci. Food Saf. 15, 63–72 (2016). https://doi.org/10.1111/1541-4337.12177

    Article  CAS  PubMed  Google Scholar 

  38. B. Biernacka, D. Dziki, U. Gawlik-Dziki, R. Różyło, M. Siastała, Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT 77, 186–192 (2017). https://doi.org/10.1016/j.lwt.2016.11.042

    Article  CAS  Google Scholar 

  39. H. Bahry, A. Pons, R. Abdallah, G. Pierre, C. Delattre, N. Fayad, S. Taha, C. Vial, Valorization of carob waste: definition of a second-generation bioethanol production process. Bioresour. Technol. 235, 25–34 (2017). https://doi.org/10.1016/j.biortech.2017.03.056

    Article  CAS  PubMed  Google Scholar 

  40. F. Aloui, B. Maazoun, Y. Gargouri, N. Miled, Optimization of oil retention in sesame based halva using emulsifiers and fibers: an industrial assay. J. Food Sci. Technol. 53, 1540–1550 (2016). https://doi.org/10.1007/s13197-015-2116-5

    Article  CAS  PubMed  Google Scholar 

  41. M. Maskan, Kinetics of colour change of kiwifruits during hot air and microwave drying. J. Food Eng. 48, 169–175 (2001). https://doi.org/10.1016/S0260-8774(00)00154-0

    Article  Google Scholar 

  42. M. Maskan, Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. J. Food Eng. 48, 177–182 (2001). https://doi.org/10.1016/S0260-8774(00)00155-2

    Article  Google Scholar 

  43. S. Cernîşev, Effects of conventional and multistage drying processing on non-enzymatic browning in tomato. J. Food Eng. 96, 114–118 (2010). https://doi.org/10.1016/j.jfoodeng.2009.07.002

    Article  Google Scholar 

  44. E. Cohen, Y. Birk, C.H. Mannheim, I.S. Saguy, A rapid method to monitor quality of apple juice during thermal processing. LWT - Food Sci. Technol. 31, 612–616 (1998). https://doi.org/10.1006/fstl.1998.0385

    Article  Google Scholar 

  45. M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)

    Article  CAS  Google Scholar 

  46. B. Biner, H. Gubbuk, M. Karhan, M. Aksu, M. Pekmezci, Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food Chem. 100, 1453–1455 (2007). https://doi.org/10.1016/j.foodchem.2005.11.037

    Article  CAS  Google Scholar 

  47. L. Prosky, N.G. Asp, T.F. Schweizer, J.W. De Vries, I. Furda, Determination of insoluble, soluble, and total dietary fibre in food products: interlaboratory study. J. Assoc. Off. Anal. Chem. 71, 1017–1023 (1988)

    CAS  PubMed  Google Scholar 

  48. AOAC, Official Methods of Analysis, 17th edn. (Association of Official Analytical Chemists, Washington, 2000)

    Google Scholar 

  49. L.Y. Chew, K.N. Prasad, I. Amin, A. Azrina, C.Y. Lau, Nutritional composition and antioxidant properties of Canarium odontophyllum Miq. (dabai) fruits. J. Food Compos. Anal. 24, 670–677 (2011)

    Article  CAS  Google Scholar 

  50. V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    CAS  Google Scholar 

  51. R. Avallone, M. Plessi, M. Baraldi, A. Monzani, Determination of chemical composition of carob (Ceratonia siliqua): protein, fat, carbohydrates, and tannins. J. Food Compos. Anal. 10, 166–172 (1997)

    Article  CAS  Google Scholar 

  52. M.C. Garau, S. Simal, C. Rosselló, A. Femenia, Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chem. 104, 1014–1024 (2007). https://doi.org/10.1016/j.foodchem.2007.01.009

    Article  CAS  Google Scholar 

  53. K. Yasumatsu, K. Sawada, S. Moritaka, M. Misaki, J. Toda, T. Wada, K. Ishii, Whipping and emulsifying properties of soybean products. Agric. Biol. Chem. 36, 719–727 (1972)

    Article  Google Scholar 

  54. A. Orphanides, V. Goulas, M. Chrysostomou, V. Gekas, Recovery of essential oils from carobs through various extraction methods. in Recent Advances in Environment, Energy Systems and Naval Science. 4th International Conference on Environmental and Geological Science and Engineering (EG ’11) (2011), pp. 219-224

  55. M. Alpaslan, M. Hayta, Rheological and sensory properties of pekmez (grape molasses)/tahin (sesame paste) blends. J. Food Eng. 54, 89–93 (2002). https://doi.org/10.1016/S0260-8774(01)00197-2

    Article  Google Scholar 

  56. M. Musa Özcan, D. Arslan, H. Gökçalik, Some compositional properties and mineral contents of carob (Ceratonia siliqua ) fruit, flour and syrup. Int. J. Food Sci. Nutr. 58, 652–658 (2007). https://doi.org/10.1080/09637480701395549

    Article  CAS  Google Scholar 

  57. F.A. Ayaz, H. Torun, R.H. Glew, Z.D. Bak, L.T. Chuang, J.M. Presley, R. Andrews, Nutrient content of carob pod (Ceratonia siliqua L.) flour prepared commercially and domestically. Plant Foods Hum. Nutr. 64, 286–292 (2009). https://doi.org/10.1007/s11130-009-0130-3

    Article  CAS  PubMed  Google Scholar 

  58. P.A. Dakia, B. Wathelet, M. Paquot, Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chem. 102, 1368–1374 (2007). https://doi.org/10.1016/j.foodchem.2006.05.059

    Article  CAS  Google Scholar 

  59. M. Papagiannopoulos, H.R. Wollseifen, A. Mellenthin, B. Haber, R. Galensa, Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua) and derived products by HPLC-UV-ESI/MS. J. Agric. Food Chem. 52, 3784–3791 (2004)

    Article  CAS  Google Scholar 

  60. N. Ortega, A. Macià, M.-P. Romero, E. Trullols, J.-R. Morello, N. Anglès, M.-J. Motilva, Rapid determination of phenolic compounds and alkaloids of carob flour by improved liquid chromatography tandem mass spectrometry. J. Agric. Food Chem. 57, 7239–7244 (2009). https://doi.org/10.1021/jf901635s

    Article  CAS  PubMed  Google Scholar 

  61. M. Elleuch, D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, H. Attia, Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem. 124, 411–421 (2011)

    Article  CAS  Google Scholar 

  62. E. Lecumberri, R. Mateos, M. Izquierdo-Pulido, P. Rupérez, L. Goya, L. Bravo, Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chem. 104, 948–954 (2007). https://doi.org/10.1016/j.foodchem.2006.12.054

    Article  CAS  Google Scholar 

  63. W.J. Craig, T.T. Nguyen, Caffeine and theobromine levels in cocoa and carob products. J. Food Sci. 49, 302–303 (1984). https://doi.org/10.1111/j.1365-2621.1984.tb13737.x

    Article  CAS  Google Scholar 

  64. G. Macleod, M. Forcen, Analysis of volatile components derived from the carob. Phytochemistry 31, 3113–3119 (1992)

    Article  CAS  Google Scholar 

  65. F. Frauendorfer, P. Schieberle, Identification of the key aroma compounds in cocoa powder based on molecular sensory correlations. J. Agric. Food Chem. 54, 5521–5529 (2006). https://doi.org/10.1021/jf060728k

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project is carried out under the MOBIDOC scheme, funded by The Ministry of Higher Education and Scientific Research through the PromESsE project and managed by the ANPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Tounsi.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tounsi, L., Mkaouar, S., Bredai, S. et al. Valorization of carob by-product for producing an added value powder: characterization and incorporation into Halva formulation. Food Measure 16, 3957–3966 (2022). https://doi.org/10.1007/s11694-022-01494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01494-z

Keywords

Navigation