Journal of Materials Engineering and Performance

, Volume 26, Issue 9, pp 4206–4216 | Cite as

Processing–Microstructure–Crystallographic Texture–Surface Property Relationships in Friction Stir Processing of Titanium

  • Sumit Bahl
  • P. L. Nithilaksh
  • Satyam Suwas
  • Satish V. Kailas
  • Kaushik Chatterjee


Friction stir processing (FSP) is a solid-state technique for microstructural modification of metallic materials. The aim of this work is to establish processing–microstructure–texture–surface properties relationship in commercially pure titanium (cp-Ti) processed by FSP under different processing conditions. The effect of processing conditions on the microstructural changes and the evolution of crystallographic texture is systematically studied. The changes in the chemical composition of the passive surface layer are characterized by x-ray photoelectron spectroscopy. The corrosion behavior of cp-Ti after FSP is evaluated in simulated body fluid and is related to the microstructure, texture and composition of passive layer. Substantial grain refinement was observed after FSP. Shear type deformation texture evolved during FSP with dynamic restoration processes weakening the overall shear texture. The corrosion resistance improved after processing at lower rotational speed due to the presence of basal planes at the surface and the incorporation of TiN in the passive layer. The results of this study suggest that surface properties of cp-Ti like passive layer and corrosion resistance are altered by FSP and can be controlled using appropriate processing parameters.


corrosion friction stir processing passive layer texture titanium 



The authors acknowledge Department of Science and Technology (DST), India for the financial support for the work. K.C. acknowledges Ramanujan fellowship from DST. Authors thank AFMM, IISc for access to equipment.


  1. 1.
    Z. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 2008, 39(3), p 642–658CrossRefGoogle Scholar
  2. 2.
    Z. Ma, F. Liu, and R. Mishra, Superplastic Deformation Mechanism of an Ultrafine-Grained Aluminum Alloy Produced by Friction Stir Processing, Acta Mater., 2010, 58(14), p 4693–4704CrossRefGoogle Scholar
  3. 3.
    E.A. El-Danaf, M.M. El-Rayes, and M.S. Soliman, Friction Stir Processing: An Effective Technique to Refine Grain Structure and Enhance Ductility, Mater. Des., 2010, 31(3), p 1231–1236CrossRefGoogle Scholar
  4. 4.
    H. Fujii, Y. Sun, H. Kato, and K. Nakata, Investigation of Welding Parameter Dependent Microstructure and Mechanical Properties in Friction Stir Welded Pure Ti Joints, Mater. Sci. Eng. A, 2010, 527(15), p 3386–3391CrossRefGoogle Scholar
  5. 5.
    S. Mironov, Y. Sato, and H. Kokawa, Development of Grain Structure During Friction Stir Welding of Pure Titanium, Acta Mater., 2009, 57(15), p 4519–4528CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Microstructural Characteristics and Mechanical Properties of Ti-6Al-4V Friction Stir Welds, Mater. Sci. Eng. A, 2008, 485(1), p 448–455CrossRefGoogle Scholar
  7. 7.
    A. Pilchak, M. Juhas, and J. Williams, Microstructural Changes Due to Friction Stir Processing of Investment-Cast Ti-6Al-4V, Metall. Mater. Trans. A, 2007, 38(2), p 401–408CrossRefGoogle Scholar
  8. 8.
    Z. Ma, A. Pilchak, M. Juhas, and J. Williams, Microstructural Refinement and Property Enhancement of Cast Light Alloys Via Friction Stir Processing, Scr. Mater., 2008, 58(5), p 361–366CrossRefGoogle Scholar
  9. 9.
    H. Farnoush, A.A. Bastami, A. Sadeghi, J.A. Mohandesi, and F. Moztarzadeh, Tribological and Corrosion Behavior of Friction Stir Processed Ti-CaP Nanocomposites in Simulated Body Fluid Solution, J. Mech. Behav. Biomed. Mater., 2013, 20, p 90–97CrossRefGoogle Scholar
  10. 10.
    H. Farnoush, A. Sadeghi, A.A. Bastami, F. Moztarzadeh, and J.A. Mohandesi, An Innovative Fabrication of Nano-HA Coatings on Ti-CaP Nanocomposite Layer Using a Combination of Friction Stir Processing and Electrophoretic Deposition, Ceram. Int., 2013, 39(2), p 1477–1483CrossRefGoogle Scholar
  11. 11.
    S. Mironov, Q. Yang, H. Takahashi, I. Takahashi, K. Okamoto, Y. Sato, and H. Kokawa, Specific Character of Material Flow in Near-Surface Layer During Friction Stir Processing of AZ31 Magnesium Alloy, Metall. Mater. Trans. A, 2010, 41(4), p 1016–1024CrossRefGoogle Scholar
  12. 12.
    S. Bahl, S. Suwas, and K. Chatterjee, The Importance of Crystallographic Texture in the Use of Titanium as an Orthopedic Biomaterial, RSC Adv., 2014, 4(72), p 38078–38087CrossRefGoogle Scholar
  13. 13.
    G. Wu, C. Shi, W. Sha, A. Sha, and H. Jiang, Effect of Microstructure on the Fatigue Properties of Ti-6Al-4V Titanium Alloys, Mater. Des., 2013, 46, p 668–674CrossRefGoogle Scholar
  14. 14.
    M. Hoseini, P. Bocher, A. Shahryari, F. Azari, J.A. Szpunar, and H. Vali, On the Importance of Crystallographic Texture in the Biocompatibility of Titanium Based Substrate, J. Biomed. Mater. Res. Part A, 2014, 102(10), p 3631–3638CrossRefGoogle Scholar
  15. 15.
    R. Kumari, T. Scharnweber, W. Pfleging, H. Besser, and J.D. Majumdar, Laser Surface Textured Titanium Alloy (Ti-6Al-4V)—Part II—Studies on Bio-Compatibility, Appl. Surf. Sci., 2015, 357, p 750–758CrossRefGoogle Scholar
  16. 16.
    W. Pfleging, R. Kumari, H. Besser, T. Scharnweber, and J.D. Majumdar, Laser Surface Textured Titanium Alloy (Ti-6Al-4V): Part 1—Surface Characterization, Appl. Surf. Sci., 2015, 355, p 104–111CrossRefGoogle Scholar
  17. 17.
    K.R. Seighalani, M.B. Givi, A. Nasiri, and P. Bahemmat, Investigations on the Effects of the Tool Material, Geometry, and Tilt Angle on Friction Stir Welding of Pure Titanium, J. Mater. Eng. Perform., 2010, 19(7), p 955–962CrossRefGoogle Scholar
  18. 18.
    I. Milošev, T. Kosec, and H.-H. Strehblow, XPS and EIS Study of the Passive Film Formed on Orthopaedic Ti-6Al-7Nb Alloy in Hank’s Physiological Solution, Electrochim. Acta, 2008, 53(9), p 3547–3558CrossRefGoogle Scholar
  19. 19.
    I. Milošv, H.H. Strehblow, B. Navinšek, and M. Metikoš-Huković, Electrochemical and Thermal Oxidation of TiN Coatings Studied by XPS, Surf. Interface Anal., 1995, 23(7–8), p 529–539Google Scholar
  20. 20.
    S. Bahl, S. Raj, S. Vanamali, S. Suwas, and K. Chatterjee, Effect of Boron Addition and Processing of Ti-6Al-4V on Corrosion Behaviour and Biocompatibility, Mater. Technol., 2014, 29(B1), p B64–B68CrossRefGoogle Scholar
  21. 21.
    I. Bertoti, M. Mohai, J. Sullivan, and S. Saied, Surface Characterisation of Plasma-Nitrided Titanium: An XPS Study, Appl. Surf. Sci., 1995, 84(4), p 357–371CrossRefGoogle Scholar
  22. 22.
    A. Shukla and R. Balasubramaniam, Effect of Surface Treatment on Electrochemical Behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr Alloys in Simulated Human Body Fluid, Corros. Sci., 2006, 48(7), p 1696–1720CrossRefGoogle Scholar
  23. 23.
    N. Gurao, R. Kapoor, and S. Suwas, Deformation Behaviour of Commercially Pure Titanium at Extreme Strain Rates, Acta Mater., 2011, 59(9), p 3431–3446CrossRefGoogle Scholar
  24. 24.
    M. Yoo, J. Morris, K. Ho, and S. Agnew, Nonbasal Deformation Modes of HCP Metals and Alloys: Role of Dislocation Source and Mobility, Metall. Mater. Trans. A, 2002, 33(3), p 813–822CrossRefGoogle Scholar
  25. 25.
    Z. Zeng, Y. Zhang, and S. Jonsson, Deformation Behaviour of Commercially Pure Titanium During Simple Hot Compression, Mater. Des., 2009, 30(8), p 3105–3111CrossRefGoogle Scholar
  26. 26.
    Y. Chen, Y. Li, J. Walmsley, S. Dumoulin, S. Gireesh, S. Armada, P. Skaret, and H. Roven, Quantitative Analysis of Grain Refinement in Titanium During Equal Channel Angular Pressing, Scr. Mater., 2011, 64(9), p 904–907CrossRefGoogle Scholar
  27. 27.
    N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev, Dynamic Recrystallization Mechanisms Operating in a Ni-20% Cr Alloy Under Hot-To-Warm Working, Acta Mater., 2010, 58(10), p 3624–3632CrossRefGoogle Scholar
  28. 28.
    C. Castan, F. Montheillet, and A. Perlade, Dynamic Recrystallization Mechanisms of an Fe-8% Al Low Density Steel Under Hot Rolling Conditions, Scr. Mater., 2013, 68(6), p 360–364CrossRefGoogle Scholar
  29. 29.
    D. He, J. Zhu, Z. Lai, Y. Liu, and X. Yang, An Experimental Study of Deformation Mechanism and Microstructure Evolution During Hot Deformation of Ti-6Al-2Zr-1Mo-1V Alloy, Mater. Des., 2013, 46, p 38–48CrossRefGoogle Scholar
  30. 30.
    C. Chang, C. Lee, and J. Huang, Relationship Between Grain Size and Zener–Holloman Parameter During Friction Stir Processing in AZ31Mg Alloys, Scr. Mater., 2004, 51(6), p 509–514CrossRefGoogle Scholar
  31. 31.
    Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, T. Hashimoto, and S. Jogan, Microtexture in the Friction-Stir Weld of an Aluminum Alloy, Metall. Mater. Trans. A, 2001, 32(4), p 941–948CrossRefGoogle Scholar
  32. 32.
    D.P. Field, T.W. Nelson, Y. Hovanski, and K.V. Jata, Heterogeneity of Crystallographic Texture in Friction Stir Welds of Aluminum, Metall. Mater. Trans. A, 2001, 32(11), p 2869–2877CrossRefGoogle Scholar
  33. 33.
    S.H.C. Park, Y.S. Sato, and H. Kokawa, Basal Plane Texture and Flow Pattern in Friction Stir Weld of a Magnesium Alloy, Metall. Mater. Trans. A, 2003, 34(4), p 987–994CrossRefGoogle Scholar
  34. 34.
    B. Beausir, L.S. Tóth, and K.W. Neale, Ideal Orientations and Persistence Characteristics of Hexagonal Close Packed Crystals in Simple Shear, Acta Mater., 2007, 55(8), p 2695–2705CrossRefGoogle Scholar
  35. 35.
    S. Suwas, B. Beausir, L. Tóth, J.-J. Fundenberger, and G. Gottstein, Texture Evolution in Commercially Pure Titanium After Warm Equal Channel Angular Extrusion, Acta Mater., 2011, 59(3), p 1121–1133CrossRefGoogle Scholar
  36. 36.
    T. Sundararajan, U. Kamachi Mudali, K. Nair, S. Rajeswari, and M. Subbaiyan, Surface Characterization of Electrochemically Formed Passive Film on Nitrogen ion Implanted Ti6Al4V Alloy, Mater. Trans. JIM, 1998, 39(7), p 756–761CrossRefGoogle Scholar
  37. 37.
    A. Shamsipur, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki, Production of In Situ Hard Ti/TiN Composite Surface Layers on CP-Ti Using Reactive Friction Stir Processing Under Nitrogen Environment, Surf. Coat. Technol., 2013, 218, p 62–70CrossRefGoogle Scholar
  38. 38.
    B. Li, Y. Shen, and W. Hu, Surface Nitriding on Ti-6Al-4V Alloy Via Friction Stir Processing Method Under Nitrogen Atmosphere, Appl. Surf. Sci., 2013, 274, p 356–364CrossRefGoogle Scholar
  39. 39.
    R.P. van Hove, I.N. Sierevelt, B.J. van Royen, P.A. Nolte, Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature, BioMed Res. Int., 2015, 2015, p 485975Google Scholar
  40. 40.
    S. Bahl, S. Suwas, and K. Chatterjee, The Control of Crystallographic Texture in the Use of Magnesium as a Resorbable Biomaterial, RSC Adv., 2014, 4(99), p 55677–55684CrossRefGoogle Scholar
  41. 41.
    L. Thair, U.K. Mudali, N. Bhuvaneswaran, K. Nair, R. Asokamani, and B. Raj, Nitrogen Ion Implantation and In Vitro Corrosion Behavior of As-Cast Ti-6Al-7Nb Alloy, Corros. Sci., 2002, 44(11), p 2439–2457CrossRefGoogle Scholar
  42. 42.
    S. Tamilselvi, V. Raman, and N. Rajendran, Corrosion Behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI, Alloys in the Simulated Body Fluid Solution by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2006, 52(3), p 839–846CrossRefGoogle Scholar
  43. 43.
    C. Fonseca and M. Barbosa, Corrosion Behaviour of Titanium in Biofluids Containing H2O2 Studied by Electrochemical Impedance Spectroscopy, Corros. Sci., 2001, 43(3), p 547–559CrossRefGoogle Scholar
  44. 44.
    A. Fekry and R.M. El-Sherif, Electrochemical Corrosion Behavior of Magnesium and Titanium Alloys in Simulated Body Fluid, Electrochim. Acta, 2009, 54(28), p 7280–7285CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Sumit Bahl
    • 1
  • P. L. Nithilaksh
    • 1
  • Satyam Suwas
    • 1
  • Satish V. Kailas
    • 2
  • Kaushik Chatterjee
    • 1
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations