Skip to main content
Log in

Structure and Thermoelectric Properties of Nanostructured Bi1−xSbx Alloys Synthesized by Mechanical Alloying

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on the synthesis of Bi1−xSbx alloys and the investigation of the relationship between their structural and thermoelectric properties. In order to produce a compound that will work efficiently even above room temperature, Bi1−xSbx alloys were chosen, as they are known to be the best suited n-type thermoelectric materials in the low-temperature regime (200 K). Using a top–down method, we produced nanostructured Bi1−xSbx powders by ball-milling in the whole composition range of 0 < x < 1.0. Nanostructuring of Bi1−xSbx alloys increases the band gap and thus results in an enlargement of the semiconducting composition region (0 ≤ x ≤ 0.5) compared to its bulk counterpart (0.07 ≤ x ≤ 0.22). The enhancement of the band gap strongly affects the transport properties of the alloys, i.e. the electrical conductivity and the Seebeck coefficient. Moreover, nanostructuring reduces the thermal conductivity through the implementation of grain boundaries as phonon-scattering centers, leading to a significant enhancement of the thermoelectric properties. The highest figure-of-merit observed in this study is 0.25 which was found for Bi0.87Sb0.13 at 280 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Altenkirch, Phys. Z. 10, 560 (1909).

    Google Scholar 

  2. G. Wiedemann and R. Franz, Annal. d. Physik 165, 497 (1853).

    Article  Google Scholar 

  3. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 1995), pp. 407–440.

    Google Scholar 

  4. B. Sales, D. Mandrus, and R. Williams, Science 272, 1325 (1996).

    Article  Google Scholar 

  5. G.S. Nolas, D.T. Morelli, and T.M. Tritt, Annu. Rev. Mater. Sci. 29, 89 (1999).

    Article  Google Scholar 

  6. G.S. Nolas, J.T. Cohn, G. Slack, and S.B. Schujman, Appl. Phys. Lett. 73, 178 (1998).

    Article  Google Scholar 

  7. K. Mastronardi, D. Young, C.-C. Wang, P. Khalifah, R.J. Cava, and A.P. Ramirez, Appl. Phys. Lett. 74, 1415 (1999).

    Article  Google Scholar 

  8. Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  9. G.E. Smith and R. Wolfe, J. Appl. Phys. 33, 841 (1962).

    Article  Google Scholar 

  10. J.-P. Issi, Thermoelectric Handbook Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC Press, 2006),

    Google Scholar 

  11. Y. Feutelais, G. Morgant, J.R. Didry, and J. Schnitter, Calphad 16, 111 (1992).

    Article  Google Scholar 

  12. P.W. Chao, H.T. Chu, and Y.H. Kao, Phys. Rev. B 9, 4030 (1974).

    Article  Google Scholar 

  13. G. Oelgart, G. Schneider, W. Kraak, and R. Herrmann, Phys. Status Solidi B 74, K75 (1976).

    Article  Google Scholar 

  14. N. Wagner and O. Brümmer, Cryst. Res. Technol. 8, 729 (1973).

    Google Scholar 

  15. A.L. Jain, Phys. Rev. 114, 1518 (1959).

    Article  Google Scholar 

  16. W. Yim and A. Amith, Solid State Electron. 15, 1141 (1972).

    Article  Google Scholar 

  17. R. Martin-Lopez, M. Zandona, and H. Scherrer, J. Mater. Sci. Lett. 15, 16 (1996).

    Article  Google Scholar 

  18. R. Martin-Lopez, B. Lenoir, A. Dauscher, X. Devaux, W. Dümmler, H. Scherrer, M. Zandona, and J.F. Remy, Scr. Mater. 37, 219 (1997).

    Article  Google Scholar 

  19. R. Martin-Lopez, S. Zayakin, B. Lenoir, F. Brochin, A. Dauscher, and H. Scherrer, Philos. Mag. Lett. 78, 283 (1998).

    Article  Google Scholar 

  20. D. Cadavid and J.E. Rodriguez, Phys. Status Solidi C 2, 3677 (2005).

    Article  Google Scholar 

  21. Y.M. Lin, O. Rabin, S.B. Cronin, J.Y. Ying, and M.S. Dresselhaus, Appl. Phys. Lett. 81, 2403 (2002).

    Article  Google Scholar 

  22. A.L. Prieto, M.M.- González, J. Keyani, R. Gronsky, T. Sands, and A.M. Stacy, J. Am. Chem. Soc. 125, 2388 (2003).

    Article  Google Scholar 

  23. O. Rabin, L.M. Lin, and M.S. Dresselhaus, Appl. Phys. Lett. 79, 81 (2001).

    Article  Google Scholar 

  24. S. Cho, Y. Kim, S.J. Youn, A. DiVenere, G.K.L. Wong, A.J. Freeman, J.B. Ketterson, L.J. Olafsen, I. Vurgaftman, J.R. Meyer, and C.A. Hoffman, Phys. Rev. B 64, 1 (2001).

    Google Scholar 

  25. S. Cho, A. DiVenere, G. Wong, J. Ketterson, and J. Meyer, Phys. Rev. B 59, 10691 (1999).

    Article  Google Scholar 

  26. M.M. González, A.L. Prieto, M.S. Knox, R. Gronsky, T. Sands, and A.M. Stacy, Chem. Mater. 15, 1676 (2003).

    Article  Google Scholar 

  27. F. Völklein and E. Kessler, Phys. Status Solidi B 143, 121 (1987).

    Article  Google Scholar 

  28. A. Datta and G.S. Nolas, Cryst. Eng. Comm. 13, 2753 (2011).

    Article  Google Scholar 

  29. S. Sumithra, D.K. Misra, C. Wei, H. Gabrisch, P.F.P. Poudeu, and K.L. Stokes, Mater. Sci. Eng. B 176, 246 (2011).

    Article  Google Scholar 

  30. B. Landschreiber, E. Güneş, C. Rohner, G. Homm, C. Will, A. Sesselmann, P.J. Klar, E. Müller, and S. Schlecht, AIP Conf. Proc. 303, 1449 (2012).

    Google Scholar 

  31. B. Landschreiber, E. Güneş, G. Homm, C. Will, P. Tomeš, C. Rohner, A. Sesselmann, P.J. Klar, E. Müller, and S. Schlecht, J. Electron. Mater. 42, 2356 (2013).

    Article  Google Scholar 

  32. E. Güneş, B. Landschreiber, D. Hartung, M.T. Elm, C. Rohner, P.J. Klar, and S. Schlecht, J. Electron. Mater. 43, 2127 (2014).

    Article  Google Scholar 

  33. H. Zhang, J.S. Son, J. Jang, J.S. Lee, W.L. Ong, J.A. Malen, and D.V. Talapin, ACS Nano 7, 10296 (2013).

    Article  Google Scholar 

  34. C.H. Will, M.T. Elm, P.J. Klar, B. Landschreiber, E. Güneş, and S. Schlecht, J. Appl. Phys. 114, 193707 (2013).

    Article  Google Scholar 

  35. G. Homm, M. Piechotka, A. Kronenberger, A. Laufer, F. Gather, D. Hartung, C. Heiliger, B.K. Meyer, P.J. Klar, S.O. Steinmüller, and J. Janek, J. Electron. Mater. 39, 1504 (2010).

    Article  Google Scholar 

  36. E. Bauer, C. Paul, S. Berger, S. Majumdar, H. Michor, M. Giovannini, A. Saccone, and A. Bianconi, J. Phys. Condens. Matter 13, L487 (2001).

    Article  Google Scholar 

  37. J.P. Dismukes, R.J. Paff, R.T. Smith, and R. Ulmer, J. Chem. Eng. Data 13, 317 (1968).

    Article  Google Scholar 

  38. C.A. Hoffmann, J.R. Meyer, and F.J. Bartoli, Phys. Rev. B 48, 11431 (1993).

    Article  Google Scholar 

  39. E. Rogacheva, S. Lyubchenko, and M. Dresselhaus, Thin Solid Films 516, 3411 (2008).

    Article  Google Scholar 

  40. F. Völklein and E. Kessler, Thin Solid Films 155, 197 (1987).

    Article  Google Scholar 

  41. H.T. Chu and Y.-H. Kao, Phys. Rev. B 1, 2369 (1970).

    Article  Google Scholar 

  42. R. Martin-Lopez, A. Dauscher, H. Scherrer, J. Heijtmanek, H. Kenzari, and B. Lenoir, Appl. Phys. A 68, 597 (1999).

    Article  Google Scholar 

  43. B. Lenoir, M. Cassart, J.-P. Michenaudj, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 57, 89 (1996).

    Article  Google Scholar 

  44. S. Dutta, V. Shubha, T. Ramesh, and F. Dsa, J. Alloys Compd. 467, 305 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the SPP 1386. P.T. and S.P. acknowledge the Austrian Science Fund (FWF, Project No I 623-N16).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Matthias T. Elm or Mathias S. Wickleder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 646 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güneş, E., Landschreiber, B., Homm, G. et al. Structure and Thermoelectric Properties of Nanostructured Bi1−xSbx Alloys Synthesized by Mechanical Alloying. J. Electron. Mater. 47, 6007–6015 (2018). https://doi.org/10.1007/s11664-018-6487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6487-z

Keywords

Navigation