Skip to main content
Log in

Thermoelectric Measurements on Sputtered ZnO/ZnS Multilayers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Multilayer samples of alternating n-type ZnO and insulating ZnS layers were deposited by radiofrequency (RF) magnetron sputtering on glass substrates. The number of ZnO/ZnS periods was varied throughout the series to increase the number of interfaces, whilst keeping the ratio of total thicknesses of ZnO and ZnS constant. Scanning electron microscopy (SEM) revealed the individual layers, but also a columnar structure. The in-plane Seebeck coefficient S and electric conductivity σ were measured between 50 K and 300 K. The dependence of S and σ on thickness d of the individual ZnO layers can be modeled by introducing a narrow interface layer of high conductivity for d > 100 nm. At lower d, fluctuations of the interfaces lead to additional effects on S and σ which arise due to percolation and can be explained qualitatively in the framework of a network model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.S. Capinski, H.J. Maris, T. Ruf, M. Cardona, K. Ploog, and D.S. Katzer, Phys. Rev. B 59, 8105 (1999).

    Article  CAS  ADS  Google Scholar 

  2. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  CAS  ADS  PubMed  Google Scholar 

  4. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).

    Article  ADS  PubMed  Google Scholar 

  5. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007)

    Article  CAS  Google Scholar 

  6. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  ADS  Google Scholar 

  7. L.D. Hicks, T.C. Harman, and M.S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993).

    Article  CAS  ADS  Google Scholar 

  8. S.V. Faleev and F. Léonard, Phys. Rev. B 77, 214304 (2008).

    Article  ADS  Google Scholar 

  9. K.M. Katika and L. Pilon, J. Appl. Phys. 103, 114308 (2008).

    Article  ADS  Google Scholar 

  10. H.J. Goldsmid and A.W. Penn, Phys. Lett. A 27, 523 (1968).

    Article  CAS  ADS  Google Scholar 

  11. J.W. Sharp, S.J. Poon, and H.J. Goldsmid, Phys. Stat. Sol. (a) 187, 507 (2001).

    Article  CAS  ADS  Google Scholar 

  12. K. Kishimoto, M. Tsukamoto, and T. Koyanagi, J. Appl. Phys. 92, 5331 (2002).

    Article  CAS  ADS  Google Scholar 

  13. E.T. Swartz and R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989).

    Article  ADS  Google Scholar 

  14. N. Cusack and P. Kendall, Proc. Phys. Soc. 72, 898 (1958).

    Article  Google Scholar 

  15. J. Nyström, Arkiv Mat. Astron. Fysik 34A, 1 (1947).

    Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft for supporting us in the framework of the priority programme 1386 “Nanostructured thermoelectrics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Homm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homm, G., Piechotka, M., Kronenberger, A. et al. Thermoelectric Measurements on Sputtered ZnO/ZnS Multilayers. J. Electron. Mater. 39, 1504–1509 (2010). https://doi.org/10.1007/s11664-010-1293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1293-2

Keywords

Navigation