Skip to main content
Log in

Effect of Bismuth Nanotubes on the Thermoelectric Properties of BiSb Alloy Nanocomposites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bismuth nanotubes have been synthesized and successfully included in Bi1−x Sb x nanoalloys to form composite structures. The nanotubes were synthesized by transformation of a β-BiI precursor with n-BuLi solution leading to tubular bismuth structures. The Bi1−x Sb x nanoalloys were produced by ball milling. Three series of composite structures were synthesized by including different fractions (0 wt.%, 3 wt.%, 5 wt.%) of nanotubes in nanoalloys of different composition x. Investigation of thermoelectric and structural properties revealed a decrease of the thermal conductivity of up to 40% for the composites in comparison with alloys without nanotube inclusions. This effect can be attributed to enhanced phonon scattering. Seebeck coefficients and electrical conductivities were both slightly enhanced in the composite series with 3 wt.% nanotube inclusions, leading to enhancement of

$$ ZT \ \left(ZT=\frac {(S^2 \sigma)}{\kappa}\,{ {T}}\right) $$

throughout the series compared with the nanoalloy series without nanotube inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.B. Brandt and Y.G. Ponomarev, Sov. Phys. JETP 28, 635 (1969).

    Google Scholar 

  2. G.E. Smith and R. Wolfe, J. Appl. Phys. 33, 841 (1962).

    Article  Google Scholar 

  3. J.-P. Issi, Thermoelectric Handbook Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC Press, 2006), pp. 30–31.

    Google Scholar 

  4. A.L. Jain, Phys. Rev. 114, 1518 (1959).

    Article  Google Scholar 

  5. W.M. Yim and A. Amith, Solid State Electron. 15, 1141 (1972).

    Article  Google Scholar 

  6. R. Martin-Lopez, M. Zandona, and H. Scherrer, J. Mater. Sci. Lett. 15, 16 (1996).

    Article  Google Scholar 

  7. X. Devaux, F. Brochin, A. Dauscher, B. Lenoir, R. Martin-Lopez, H. Scherrer, and S. Scherrer, Nanostruct. Mater. 8, 137 (1997).

    Article  Google Scholar 

  8. A. Datta and G.S. Nolas, Cryst. Eng. Commun. 13, 2753 (2011).

    Article  Google Scholar 

  9. S. Sumithra, D.K. Misra, C. Wei, H. Gabrisch, P.F.P. Poudeu, and K.L. Stokes, Mater. Sci. Eng. B 176, 246 (2011).

    Article  Google Scholar 

  10. R. Martin-Lopez, B. Lenoir, A. Dauscher, X. Devaux, W. Dümmler, H. Scherrer, M. Zandona, and J.F. Remy, Scr. Mater. 37, 219 (1997).

    Article  Google Scholar 

  11. R. Martin-Lopez, S. Zayakin, B. Lenoir, F. Brochin, A. Dauscher, and H. Scherrer, Philos. Mag. Lett. 78, 283 (1998).

    Article  Google Scholar 

  12. R. Boldt, M. Kaiser, D. Köhler, F. Krumreich, and M. Ruck, Nano Lett. 10, 208 (2010).

    Article  Google Scholar 

  13. R. Tenne, L. Margulis, M. Genut, and G. Hodes, Lett. Nat. 360, 444 (1992).

    Article  Google Scholar 

  14. B. Mayers and Y. Xia, Adv. Mater. 14, 279 (2002).

    Article  Google Scholar 

  15. J. Sha, J. Niu, X. Ma, J. Xu, X. Zhang, Q. Yang, and D. Yang, Adv. Mater. 14, 1219 (2002).

    Article  Google Scholar 

  16. N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).

    Article  Google Scholar 

  17. J.M. Zide, D.O. Klenov, S. Stemmer, A.C. Gossard, G. Zeng, J.E. Bowers, D. Vashaee, and A. Shakouri, Appl. Phys. Lett. 87, 112102 (2005).

    Article  Google Scholar 

  18. Y. Li, J. Wang, Z. Deng, Y. Wu, X. Sun, D. Yu, and P. Yang, J. Am. Chem. Soc. 123, 9904 (2002).

    Article  Google Scholar 

  19. L. Li, Y.W. Yang, X.H. Huang, G.H. Li, R. Ang, and L.D. Zhang, Appl. Phys. Lett. 88, 103119 (2006).

    Article  Google Scholar 

  20. O.V. Kharissova, M. Osorio, M. Garza, and B.I. Kharisov, Synth. React. Inorg. Met. Org. Nano Met. Chem. 38, 567 (2008).

    Google Scholar 

  21. B. Rasche, G. Seifert, and A. Enyashin, J. Phys. Chem. 114, 22092 (2010).

    Google Scholar 

  22. B. Landschreiber, E. Güneş, C. Rohner, G. Homm, C. Will, A. Sesselmann, P.J. Klar, E. Müller, and S. Schlecht, AIP Conf. Proc. 303, 1449 (2012).

    Google Scholar 

  23. G. Homm, M. Piechotka, A. Kronenberger, A. Laufer, F. Gather, D. Hartung, C. Heiliger, B.K. Meyer, P.J. Klar, S.O. Steinmüller, and J. Janek, J. Electron. Mater. 39, 1504 (2010).

    Article  Google Scholar 

  24. S. Derrouiche, C.Z. Loebick, C. Wang, and L. Pfefferle, J.␣Phys. Chem. 114, 4336 (2010).

    Google Scholar 

  25. M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, and Y. Qian, Adv. Mater. 14, 1658 (2002).

    Article  Google Scholar 

  26. J.P. Dismukes, R.J. Paff, R.T. Smith, and R. Ulmer, J.␣Chem. Eng. Data 13, 317 (1968).

    Article  Google Scholar 

  27. P.W. Chao, H.T. Chu, and Y.H. Kao, Phys. Rev. B 9, 4030 (1974).

    Article  Google Scholar 

  28. G. Oelgart, G. Schneider, W. Kraak, and R. Herrmann, Phys. Status Solidi B 74, K75 (1976).

    Article  Google Scholar 

  29. S. Cho, A. DiVenere, G. Wong, J. Ketterson, and J. Meyer, Phys. Rev. B 59, 10691 (1999).

    Article  Google Scholar 

  30. M.T. Elm, C.H. Will, P.J. Klar, B. Landschreiber, E. Güneş, and S. Schlecht, J. Appl. Phys. 114, 193707 (2013).

    Google Scholar 

  31. R. Martin-Lopez, A. Dauscher, H. Scherrer, J. Heijtmanek, H. Kenzari, and B. Lenoir, Appl. Phys. A 68, 597 (1999).

    Article  Google Scholar 

  32. B. Landschreiber, E. Güneş, G. Homm, C. Will, P. Tomeš, C. Rohner, A. Sesselmann, P.J. Klar, E. Müller, and S. Schlecht, J. Electron. Mater. 42, 2356 (2013).

    Article  Google Scholar 

  33. B. Lenoir, H. Scherrer, and J. Michenaudj, J. Phys. Chem. Solids 57, 89 (1996).

    Article  Google Scholar 

  34. S. Dutta, V. Shubha, T. Ramesh, and F. Dsa, J. Alloy Compd. 467, 305 (2009).

    Article  Google Scholar 

  35. J.P. Issi and J.H. Mangez, Phys. Rev. R 6, 4429 (1972).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the DFG within the SPP 1386 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Schlecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güneş, E., Landschreiber, B., Hartung, D. et al. Effect of Bismuth Nanotubes on the Thermoelectric Properties of BiSb Alloy Nanocomposites. J. Electron. Mater. 43, 2127–2133 (2014). https://doi.org/10.1007/s11664-014-2989-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-2989-5

Keywords

Navigation