Skip to main content
Log in

Reactivation and reuse of TiO2-SnS2 composite catalyst for solar-driven water treatment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

One of the most important features of photocatalytic materials intended to be used for water treatment is their long-term stability. The study is focused on the application of thermal and chemical treatments for the reactivation of TiO2-SnS2 composite photocatalyst, prepared by hydrothermal synthesis and immobilized on the glass support using titania/silica binder. Such a catalytic system was applied in solar-driven treatment, solar/TiO2-SnS2/H2O2, for the purification of water contaminated with diclofenac (DCF). The effectiveness of studied reactivation methods for retaining TiO2-SnS2 activity in consecutive cycles was evaluated on basis of DCF removal and conversion, and TOC removal and mineralization of organic content. Besides these water quality parameters, biodegradability changes in DCF aqueous solution treated by solar/TiO2-SnS2/H2O2 process using simply reused (air-dried) and thermally and chemically reactivated composite photocatalyst through six consecutive cycles were monitored. It was established that both thermal and chemical reactivation retain TiO2-SnS2 activity in the second cycle of its reuse. However, both treatments caused the alteration in the TiO2-SnS2 morphology due to the partial transformation of visible-active SnS2 into non-active SnO2. Such alteration, repeated through consecutive reactivation and reuse, was reflected through gradual activity loss of TiO2-SnS2 composite in applied solar-driven water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cao L, Gao Z, Suib SL, Obee TN, Hay SO, Freihaut JD (2000) Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: studies of deactivation and regeneration. J Catal 196:253–281

    Article  CAS  Google Scholar 

  • ChemSpider: search and share chemistry (2017) Accessed on July 10, 2017 http://www.chemspider.com/Chemical-Structure.2925.html?rid=90bff2bc-64e5-43da-a152-0afe422aaf6d

  • Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  • Debellefontaine H, Chakchouk M, Foussard JN, Tissot D, Striolo P (1996) Treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation. Environ Pollut 92(2):155–164

    Article  CAS  Google Scholar 

  • EU (2013) Directive 2013/39/EU of the European Parliament and of the Council amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Commun 226:1–17

    Google Scholar 

  • Farré MJ, Franch MI, Ayllón JA, Peral J, Domènech X (2007) Biodegradability of treated aqueous solutions of biorecalcitrant pesticides by means of photocatalytic ozonation. Desalination 211:22–33

    Article  Google Scholar 

  • Gandhi VG, Kumar Mishra M, Joshi PA (2012) A study on deactivation and regeneration of titanium dioxide during photocatalytic degradation of phtalic acid. J Ind Eng Chem 18:1902–1907

    Article  CAS  Google Scholar 

  • Ganose AM, Scanlon DO (2016) Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics. J Mater Chem C 4:1467–1475

    Article  CAS  Google Scholar 

  • Garcia-Araya JF, Beltran FJ, Aguinaco A (2010) Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. J Chem Technol Biotechnol 85:798–804

    Article  CAS  Google Scholar 

  • Huang Y, Zhou Z-H, Wu Y-P, Meng Y-C, Shen S (2011) The relationship between the TiO2 photocatalyst deactivation, regeneration and the concentration of the surface adsorbed SO4 2−. Adv Mater Res 306-307:1557–1562

    Article  CAS  Google Scholar 

  • Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218

    Article  CAS  Google Scholar 

  • Idris A, Hassan N, Rashid R, Ngomsik A-F (2011) Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (VI) reduction under sunlight. J Hazard Mater 186:629–635

    Article  CAS  Google Scholar 

  • Kete M, Pavlica E, Fresno F, Bratina G, Lavrencic Stangar U (2014) Highly active photocatalytic coatings prepared by a low-temperature method. Environ Sci Poll Res 21:11238–11249

    Article  CAS  Google Scholar 

  • Koci K, Obalova L, Matejova L, Placha D, Lacny Z, Jirkovsky J, Solcova O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B 89:494–502

    Article  CAS  Google Scholar 

  • Kosma CI, Lambropoulou DA, Albanis TA (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466-467:421–438

    Article  CAS  Google Scholar 

  • Kovacic M, Kusic H, Lavrencic Stangar U, Dionysiou DD, Loncaric Bozic A. (2016a) Solar driven degradation of pharmaceuticals using immobilized composite photocatalyst, Book of Abstracts of The 21st International Conference on Semiconductor Photocatalysis and Solar Energy Conversion (SPASEC-21), Atlanta, GA, November 13–16, 2016; Redox Technologies. London, Ontario, Canada, 2016; SPASEC-21 pp. 50

  • Kovacic M, Salaeh S, Kusic H, Suligoj A, Kete M, Fanetti M, Lavrencic Stangar U, Dionysiou DD, Loncaric Bozic A (2016b) Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environ Sci Poll Res 23:17982–17994

    Article  CAS  Google Scholar 

  • Kovacic M, Kusic H, Fanetti M, Lavrencic Stangar U, Valant M, Dionysiou DD, Loncaric BA (2017) TiO2-SnS2 nanocomposites; solar active photocatalytic materials for water treatment. Environ Sci Poll Res 24(2017):19965–19979

    Article  CAS  Google Scholar 

  • Kumar Reddy PA, Laxma Reddy PV, Sharma V, Srinivas B, Kumari VD, Subrahmanyam M (2010) Photocatalytic degradation of isoproturon pesticide on C, N and S doped TiO2. J Water Resour Prot 2:235–244

    Article  Google Scholar 

  • Lazar MA, Varghese S, Nair SS (2012) Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2:572–601

    Article  CAS  Google Scholar 

  • Lopez R, Gomez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7

    Article  CAS  Google Scholar 

  • Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile?—model studies on epitaxial TiO2 films. Nat Sci Rep 4:4043

    Article  Google Scholar 

  • Miranda-García N, Suárez S, Maldonado MI, Malato S, Sánchez B (2014) Regeneration approaches for TiO2 immobilized photocatalyst used in the elimination of emerging contaminants in water. Catal Today 230:27–34

    Article  Google Scholar 

  • Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, 3rd edn. John Wiley & Sons, Hoboken

    Google Scholar 

  • Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A 216:179–182

    Article  CAS  Google Scholar 

  • Pan L, Zou J-J, Wang S, Huang Z-F, Zhang X, Wang L (2013) Enhancement of visible-light-induced photodegradation over hierarchical porous TiO2 by nonmetal doping and water-mediated dye sensitization. Appl Surf Sci 268:252–258

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  CAS  Google Scholar 

  • Postigo C, Barceló D (2015) Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. Sci Total Environ 503-504:32–47

    Article  CAS  Google Scholar 

  • Reszczynska J, Iwulska A, Sliwinski G, Zaleska A (2012) Characterization and photocatalytic activity of rare earth metal-doped titanium dioxide. Physicochem Probl Miner Process 48(1):201–208

    CAS  Google Scholar 

  • Rizzo L, Uyguner CS, Selcuk H, Bekbolet M, Anderson M (2007) Activation of solgel titanium nanofilm by UV illumination for NOM removal. Water Sci Technol 55(12):113–118

    Article  CAS  Google Scholar 

  • Salaeh S, Kovacic M, Kosir D, Kusic H, Lavrencic Stangar U, Dionysiou DD, Loncaric BA (2017) Reuse of TiO2-based catalyst for solar driven water treatment; thermal and chemical reactivation. J Photochem Photobiol A 333:117–129

    Article  CAS  Google Scholar 

  • Sein MM, Zedda M, Tuerk J, Schmidt TC, Golloch A, Von Sonntag C (2008) Oxidation of diclofenac with ozone in aqueous solution. Environ Sci Technol 42(17):6656–6662

    Article  CAS  Google Scholar 

  • Setvín M, Aschauer U, Scheiber P, Li YF, Hou W, Schmid M, Selloni A, Diebold U (2013) Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 341(6149):988–991

    Article  Google Scholar 

  • Spasiano D, Marotta R, Malato S, Fernandez-Ibañez P, Di Somma I (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B 170-171:90–123

    Article  CAS  Google Scholar 

  • Stülten D, Zühlke S, Lamshöft M, Spiteller M (2008) Occurrence of diclofenac and selected metabolites in sewage effluents. Sci Total Environ 405:310–316

    Article  Google Scholar 

  • Sui Q, Cao X, Lu S, Zhao W, Qiu Z, Yu G (2015) Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerg Cont 1:14–24

    Article  Google Scholar 

  • Trovo AG, Nogueira RFP (2011) Diclofenac abatement using modified solar photo-Fenton process with ammonium iron(III) citrate. J Braz Chem Soc 22(6):1033–1039

    Article  CAS  Google Scholar 

  • Vogna D, Marotta R, Napolitano A, Andreozzi R, d’Ischia M (2004) Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res 38:414–422

    Article  CAS  Google Scholar 

  • Xu K, Li N, Zeng D, Tian S, Zhang S, Hu D, Xie C (2015) Interface bonds determined gas-sensing of SnO2−SnS2 hybrids to ammonia at room temperature. Appl Mater Interfaces 7:11359–11368

    Article  CAS  Google Scholar 

  • Yao L, Zhang YC, Li J, Chen Y (2014) Photocatalytic properties of SnS2/SnO2 nanocomposite prepared by thermal oxidation of SnS2 nanoparticles in air. Sep Purif Technol 122:1–5

    Article  CAS  Google Scholar 

  • Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J Hazard Mater 171:551–562

    Article  CAS  Google Scholar 

  • Zhang YC, Du ZN, Li KW, Zhang M, Dionysiou DD (2011) High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS2 nanoparticles. Appl Mater Interfaces 3(5):1528–1537

    Article  CAS  Google Scholar 

  • Zhang YC, Li J, Xu HY (2012) One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Appl Catal B 123-124:18–26

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the Croatian Science Foundation (Project UIP-11-2013-7900; Environmental Implications of the Application of Nanomaterials in Water Purification Technologies (NanoWaP)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hrvoje Kusic or Ana Loncaric Bozic.

Additional information

Responsible editor: Suresh Pillai

Electronic supplementary material

ESM 1

(DOC 581 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovacic, M., Kopcic, N., Kusic, H. et al. Reactivation and reuse of TiO2-SnS2 composite catalyst for solar-driven water treatment. Environ Sci Pollut Res 25, 2538–2551 (2018). https://doi.org/10.1007/s11356-017-0667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0667-x

Keywords

Navigation