Skip to main content
Log in

TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The study is aimed at evaluating TiO2-SnS2 composites as effective solar-active photocatalysts for water treatment. Two strategies for the preparation of TiO2-SnS2 composites were examined: (i) in-situ chemical synthesis followed by immobilization on glass plates and (ii) binding of two components (TiO2 and SnS2) within the immobilization step. The as-prepared TiO2-SnS2 composites and their sole components (TiO2 or SnS2) were inspected for composition, crystallinity, and morphology using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Diffuse reflectance spectroscopy (DRS) was used to determine band gaps of immobilized TiO2-SnS2 and to establish the changes in comparison to respective sole components. The activity of immobilized TiO2-SnS2 composites was tested for the removal of diclofenac (DCF) in aqueous solution under simulated solar irradiation and compared with that of single component photocatalysts. In situ chemical synthesis yielded materials of high crystallinity, while their morphology and composition strongly depended on synthesis conditions applied. TiO2-SnS2 composites exhibited higher activity toward DCF removal and conversion in comparison to their sole components at acidic pH, while only in situ synthesized TiO2-SnS2 composites showed higher activity at neutral pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beranek R, Kisch H (2007) Tuning the optical and photoelectrochemical properties of surface-modified TiO2. Photochem Photobiol Sci 7:40–48

    Article  Google Scholar 

  • Boncagni NT, Otaegui JM, Warner E, Curran T, Ren J, Fidalgo de Cortalezzi MM (2009) Exchange of TiO2 nanoparticles between streams and streambeds. Environ Sci Technol 43:7699–7705

    Article  CAS  Google Scholar 

  • Burton LA, Colombara D, Abellon RD, Grozema FC, Peter LM, Savenije TJ, Dennler G, Walsh A (2013) Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater 25:4908–4916

    Article  CAS  Google Scholar 

  • Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B 67:197–205

    Article  CAS  Google Scholar 

  • Chen X, Burda C (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 130:5018–5019

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  • Chowdhury P, Moreira J, Gomaa H, Ray AK (2012) Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and kinetic study. Ind Eng Chem Res 51:4523–4532

    Article  CAS  Google Scholar 

  • Dette C, Pérez-Osorio MA, Kley CS, Punke P, Patrick CE, Jacobson P, Giustino F, Jung SJ, Kern K (2014) TiO2 anatase with a bandgap in the visible region. Nano Lett 14:6533–6538

    Article  CAS  Google Scholar 

  • EU (2013) Directive 2013/39/EU of the European Parliament and of the Council amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Communities 226:1–17

    Google Scholar 

  • Evonik Industries (2016) AEROXIDE®, AERODISP® and AEROPERL® titanium dioxide as photocatalyst, Technical information 1243- Accessed on Dec 18, 2016 https://www.aerosil.com/sites/lists/IM/Documents/TI-1243-Titanium-Dioxide-as-Photocatalyst-EN.pdf

  • Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42:2–14

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  • Gurevich YY, Pleskov YV (1983) Photoelectrochemistry of semiconductors. In: Willardson RK (ed) Beer AC (eds) semiconductors and semimetals: deep levels, GaAs, alloys, photochemistry, vol 19. Academic Press Elsevier, New York, pp 255–328

    Google Scholar 

  • Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218

    Article  CAS  Google Scholar 

  • Katsanaki AV, Kontos AG, Maggos T, Pelaez M, Likodimos V, Pavlatou EA, Dionysiou DD, Falaras P (2013) Photocatalytic oxidation of nitrogen oxides on N-F-doped titania thin films. Appl Catal B 140-141:619–625

    Article  CAS  Google Scholar 

  • Kete M, Pavlica E, Fresno F, Bratina G, Lavrencic Stangar U (2014) Highly active photocatalytic coatings prepared by a low-temperature method. Environ Sci Pollut Res 21:11238–11249

    Article  CAS  Google Scholar 

  • Koci K, Obalova L, Matejova L, Placha D, Lacny Z, Jirkovsky J, Solcova O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B 89:494–502

    Article  CAS  Google Scholar 

  • Kovacic M, Salaeh S, Kusic H, Suligoj A, Kete M, Fanetti M, Lavrencic Stangar U, Dionysiou DD, Loncaric Bozic A (2016) Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environ Sci Pollut Res 23:17982–17994

    Article  CAS  Google Scholar 

  • Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Photocatalytic degradation of reactive black 5 in aqueous solutions: effect of operating conditions and coupling with ultrasound irradiation. Water Res 41:2236–2246

    Article  CAS  Google Scholar 

  • Kusic H, Leszczynska D (2012) Altered toxicity of organic pollutants in water originated from simultaneous exposure to UV photolysis and CdSe/ZnS quantum dots. Chemosphere 89:900–906

    Article  CAS  Google Scholar 

  • Li L, Wang L, Hu T, Zhang W, Zhang X, Chen X (2014) Preparation of highly photocatalytic active CdS/TiO2 nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis. J Solid State Chem 218:81–89

    Article  CAS  Google Scholar 

  • Lima ANC, Topolski DK (2011) Nanomaterials for application in refractory materials. In: Perez Bergmann C, Jung de Andrade M (eds) Nanostructured materials for engineering applications. Springer, Heidelberg, pp 133–140

    Chapter  Google Scholar 

  • Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang P (2013) Large-scale synthesis of transition-metal doped TiO2 nanowires with controllable overpotential. J Am Chem Soc 135:9995–9998

    Article  CAS  Google Scholar 

  • Lopez R, Gomez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7

    Article  CAS  Google Scholar 

  • Moradi S, Azar PA, Farshid SR, Khorrami SA, Givianrad MH (2012) Effect of additives on characterization and photocatalytic activity of TiO2/ZnO nanocomposite prepared via sol-gel process. Inter J Chem Eng 2012(215373):1–5

    Article  Google Scholar 

  • Mossak Kamkui H, Laminsi S, Njopwouo D, Tiya Djowe A (2014) Deep insight in thermal synthesis of tin disulphide (SnS2) microplates, starting from tin sulphate and sulfur: growth mechanism based on LUX FLOOD’s theory of acid and base. Chalcogenide Lett 11:219–226

    Google Scholar 

  • Park J-Y, Choi K-I, Lee J-H, Hwang C-H, Choi D-Y, Lee J-W (2013) Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions. Mater Lett 97:64–66

    Article  CAS  Google Scholar 

  • Peeters OM, de Ranter CJ (1977) Pathways in thioacetamide hydrolysis in aqueous acid: detection by kinetic analysis. J. Chem. Soc Perkin Trans 2(15):1832–1835

    Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  CAS  Google Scholar 

  • Perez-Estrada LA, Malato S, Gernjak W, Aguera A, Thurman EM, Ferrer I, Fernandez-Alba AR (2005) Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environ Sci Technol 39:8300–8306

    Article  CAS  Google Scholar 

  • Pichat P (2013) Photocatalysis and water purification: from fundamentals to recent applications. Wiley, Weinheim

    Book  Google Scholar 

  • Postigo C, Barceló D (2015) Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. Sci Total Environ 503-504:32–47

    Article  CAS  Google Scholar 

  • Robertson PKJ, Robertson JMC, Bahnemann DW (2012) Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. J Hazard Mater 211-212:161–171

    Article  CAS  Google Scholar 

  • Robles Velasco MV, Daud Sarruf F, Nunes Salgado-Santos IM, Haroutiounian-Filho CA, Kaneko TM, Baby AR (2008) Broad spectrum bioactive sunscreens. Int J Pharm 363:50–57

    Article  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  • Štengl V, Bakardjieva S, Murafa N, Houšková V, Lang K (2008) Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogenous hydrolysis. Microporous Mesoporous Mater 110:370–378

    Article  Google Scholar 

  • Stülten D, Zühlke S, Lamshöft M, Spiteller M (2008) Occurrence of diclofenac and selected metabolites in sewage effluents. Sci Total Environ 405:310–316

    Article  Google Scholar 

  • Trovo AG, Nogueira RFP (2011) Diclofenac abatement using modified solar photo-Fenton process with ammonium iron(III) citrate. J Braz Chem Soc 22(6):1033–1039

    Article  CAS  Google Scholar 

  • Umar A, Akhtar MS, Dar GN, Abaker M, Al-Hajry A, Baskoutas S (2013) Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes. Talanta 114:183–190

    Article  CAS  Google Scholar 

  • Urlaub R, Posset U, Thull R (2000) Spectroscopic investigations on sol-gel derived coatings from acid-modified titanium alkoxides. J Non-Cryst Solids 265:276–284

    Article  CAS  Google Scholar 

  • Zhang YC, Li J, Xu HY (2012) One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Appl Catal B 123-124:18–26

    Article  CAS  Google Scholar 

  • Zhu W, Yang Y, Ma D, Wang H, Zhang Y, Hu H (2015) Controlled growth of flower-like SnS2 hierarchical structures with superior performance for lithium-ion battery applications. Ionics 21:19–26

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Croatian Science Foundation (Project UIP-11-2013-7900; Environmental Implications of the Application of Nanomaterials in Water Purification Technologies (NanoWaP)) and Slovenian Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hrvoje Kusic or Ana Loncaric Bozic.

Additional information

Responsible editor: Suresh Pillai

Electronic supplementary material

ESM 1

(DOC 16.2 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovacic, M., Kusic, H., Fanetti, M. et al. TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment. Environ Sci Pollut Res 24, 19965–19979 (2017). https://doi.org/10.1007/s11356-017-9485-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9485-4

Keywords

Navigation