Skip to main content
Log in

Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The study is aimed at evaluating the potential of immobilized TiO2-based zeolite composite for solar-driven photocatalytic water treatment. In that purpose, TiO2-iron-exchanged zeolite (FeZ) composite was prepared using commercial Aeroxide TiO2 P25 and iron-exchanged zeolite of ZSM5 type, FeZ. The activity of TiO2-FeZ, immobilized on glass support, was evaluated under solar irradiation for removal of diclofenac (DCF) in water. TiO2-FeZ immobilized in a form of thin film was characterized for its morphology, structure, and composition using scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDX). Diffuse reflectance spectroscopy (DRS) was used to determine potential changes in band gaps of prepared TiO2-FeZ in comparison to pure TiO2. The influence of pH, concentration of hydrogen peroxide, FeZ wt% within the composite, and photocatalyst dosage on DCF removal and conversion efficiency by solar/TiO2-FeZ/H2O2 process was investigated. TiO2-FeZ demonstrated higher photocatalytic activity than pure TiO2 under solar irradiation in acidic conditions and presence of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Boncagni NT, Otaegui JM, Warner E, Curran T, Ren J, Fidalgo de Cortalezzi MM (2009) Exchange of TiO2 nanoparticles between streams and streambeds. Environ Sci Technol 43:7699–7705

    Article  CAS  Google Scholar 

  • Buscio V, Brosillon S, Mendret J, Crespi M, Gutiérrez-Bouzán C (2015) Photocatalytic membrane reactor for the removal of C.I. Disperse Red 73. Mater 8:3633–3647

    Article  Google Scholar 

  • Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B 67:197–205

    Article  CAS  Google Scholar 

  • Chen R, Pignatello JJ (1997) Role of quinine intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ Sci Technol 31:2399–2406

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater treatment, 20th edn. APHA & AWWA & WEF, USA

    Google Scholar 

  • Debnath S, Ballav N, Nyoni H, Maity A, Pillay K (2015) Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite. Appl Catal B 163:330–342

    Article  CAS  Google Scholar 

  • Dopar M, Kusic H, Koprivanac N (2011) Treatment of simulated industrial wastewater by photo-Fenton process: Part I. The optimization of process parameters using design of experiments (DOE). Chem Eng J 173:267–279

    Article  CAS  Google Scholar 

  • Esplugas S, Gimenez J, Contreras S, Pascual E, Rodriguez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042

    Article  CAS  Google Scholar 

  • EU (2013) Directive 2013/39/EU of the European Parliament and of the Council amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Commun 226:1–17

    Google Scholar 

  • Evonik Industries (2016) AEROXIDE®, AERODISP® and AEROPERL® Titanium Dioxide as photocatalyst, Technical information 1243 - Accessed on Feb 29, 2016. https://www.aerosil.com/sites/lists/IM/Documents/TI-1243-Titanium-Dioxide-as-Photocatalyst-EN.pdf

  • Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mat Sci Semicon Proc 42:2–14

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  • Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218

    Article  CAS  Google Scholar 

  • Jung YS, Lim WT, Park J-Y, Kim Y-H (2009) Effect of pH on Fenton and Fenton-like oxidation. Environ Technol 30:183–190

    Article  CAS  Google Scholar 

  • Juretic Perisic D, Gilja V, Novak Stankov M, Katancic Z, Kusic H, Lavrencic Stangar U, Dionysiou DD, Loncaric Bozic A (2016) Removal of diclofenac from water by zeolite-assisted advanced oxidation processes. J Photochem Photobiol A 321:238–247

    Article  Google Scholar 

  • Kete M, Pavlica E, Fresno F, Bratina G, Lavrencic Stangar U (2014) Highly active photocatalytic coatings prepared by a low-temperature method. Environ Sci Poll Res 21:11238–11249

    Article  CAS  Google Scholar 

  • Koci K, Obalova L, Matejova L, Placha D, Lacny Z, Jirkovsky J, Solcova O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B 89:494–502

    Article  CAS  Google Scholar 

  • Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Photocatalytic degradation of reactive black 5 in aqueous solutions: Effect of operating conditions and coupling with ultrasound irradiation. Water Res 41:2236–2246

    Article  CAS  Google Scholar 

  • Kusic H, Koprivanac N, Selanec I (2006) Fe-exchanged zeolite as the effective heterogeneous Fenton-type catalyst for the organic pollutant minimization: UV irradiation assistance. Chemosphere 65:65–73

    Article  CAS  Google Scholar 

  • Lai Y, Liu W, Fang J, Qin F, Wang M, Yu F, Zhang K (2015) Fe-doped anatase TiO2/carbon composite as an anode with superior reversible capacity for lithium storage. RSC Adv 5:93676–93683

    Article  CAS  Google Scholar 

  • Liu Y, Wei JH, Xiong R, Pan CX, Shi J (2011) Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles. Appl Surf Sci 257:8121–8126

    Article  CAS  Google Scholar 

  • Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Nadtochenko VA, Kiwi J (1998) Photolysis of FeOH2+ and FeCl2+ in aqueous solution. Photodissociation kinetics and quantum yields. Inorg Chem 37:5233–5238

    Article  CAS  Google Scholar 

  • Noorjahan M, Durga Kumari V, Subrahmanyam M, Boule P (2004) A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film. Appl Catal B 47:209–213

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  CAS  Google Scholar 

  • Perez-Estrada LA, Maldonado MI, Gernjak W, Aguera A, Fernandez-Alba AR, Ballesteros MM, Malato S (2005a) Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale. Catal Today 101:219–226

    Article  CAS  Google Scholar 

  • Perez-Estrada LA, Malato S, Gernjak W, Aguera A, Thurman EM, Ferrer I, Fernandez-Alba AR (2005b) Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environ Sci Technol 39:8300–8306

    Article  CAS  Google Scholar 

  • Peternel I, Koprivanac N, Loncaric Bozic A, Kusic H (2007) Comparative study of UV/TiO2, UV/ZnO and UV/Fenton processes for the organic reactive dye in aqueous solution. J Hazard Mater 148:477–484

    Article  CAS  Google Scholar 

  • Pichat P (2013) Photocatalysis and water purification: from fundamentals to recent applications. Wiley, Weinheim

    Book  Google Scholar 

  • Rauscher M, Kesore K, Mönning R, Schwieger W, Tissler A, Turek T (1999) Preparation of a highly reactive FeZSM5 catalyst through solid-state ion exchange for the catalytic decomposition of N2O. Appl Catal A 184:249–256

    Article  CAS  Google Scholar 

  • Robertson PKJ, Robertson JMC, Bahnemann DW (2012) Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. J Hazard Mater 211–212:161–171

    Article  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  • Tarr MA (2003) Fenton and modified Fenton methods for pollutant degradation. In: Tarr MA (ed) Chemical degradation methods for wastes and pollutants—environmental and industrial applications. Marcel Dekker, Inc, New York, pp 165–200

    Chapter  Google Scholar 

  • Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box-Behnken experimental design. J Hazard Mater 171:551–562

    Article  CAS  Google Scholar 

  • Zhao C, Pelaez M, Dionysiou DD, Pillai SC, Byrne JA, O’Shea KE (2014) UV and visible light activated TiO2 photocatalysis of 6-hydroxymethyl uracil, a model compound for the potent cyanotoxin cylindrospermopsin. Catal Today 224:70–76

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the financial support from the Croatian Science Foundation (Project UIP-11-2013-7900; Environmental Implications of the Application of Nanomaterials in Water Purification Technologies (NanoWaP)). We acknowledge Dr. Ivana Steinberg for providing the laboratory equipment for spin coating. We acknowledge Dr. Davor Ljubas, Dr. Damir Dovic, and Alan Rodic, all from the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia, for their contribution in light intensity measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hrvoje Kusic or Ana Loncaric Bozic.

Additional information

Responsible editor: Suresh Pillai

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary Material (DOC 9085 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovacic, M., Salaeh, S., Kusic, H. et al. Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environ Sci Pollut Res 23, 17982–17994 (2016). https://doi.org/10.1007/s11356-016-6985-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6985-6

Keywords

Navigation