Skip to main content
Log in

Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A biocontrol Streptomyces isolate (C) was tested for its plant growth promoting qualities under saline conditions. Exposure to elevated osmotic strengths up to 300 mM NaCl increased dry weight and cfu/ml significantly. The isolate C produced indolyl-3-acetic acid (IAA) into the medium in the amount of 2.4 μg/ml. The amount of auxin increased after adding salt and reached to 4.7 μg/ml in 300 mM NaCl. Biosynthesis of siderophore was detectable and increased in presence of NaCl. Streptomyces isolate C showed good solubilization of tricalcium phosphate in culture medium with 92 mg/l. Solubilization decreased in presence of NaCl. Soil treatment with isolate C increased the growth and development of wheat plant in normal and saline conditions. In this treatment there were significant increases in germination rate, percentage and uniformity, shoot length and dry weight compared to the control. Applying the bacterial inocula increased the concentration of N, P, Fe and Mn in wheat shoots grown in normal and saline soil, but had non-significant effect on other micro and macronutrients concentrations. Results of this study show that Streptomyces isolate C has potential to be utilized as biofertilizer in saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Article  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Aly MM, El-Sabbagh SM, El-Shouny WA, Ebrahim MKH (2003) Physiological response of Zea mays to NaCl stress with respect to Azotobacter chroococcum and Streptomyces niveus. Pak J Biol Sci 6:2073–2080

    Article  Google Scholar 

  • Argandona M, Nieto JJ, Iglesias-Guerra F, Calderón MI, García-Estepa R, Vargas C (2010) Interplay between iron homeostasis and the osmotic stress response in the halophilic bacterium Chromohalobacter salexigens. Appl Environ Microb 76:3575–3589

    Article  CAS  Google Scholar 

  • Ashraf Soltani A, Khavazi K, Asadi-Rahmani H, Omidvari M, Abaszadeh Dahaji P, Mirhoseyni H (2010) Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J Agr Sci 2:106–115

    Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biot 84:11–18

    Article  CAS  Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA (ed) Methods of soil analysis, Part 2. Chemical and microbiological properties. American Society of Agronomy, Agron. Series. No. 9, Madison, pp 1066–1083

  • Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    Article  CAS  Google Scholar 

  • de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric Streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. Biocontrol 54:807–816

    Article  Google Scholar 

  • de Weger LA, van Boxtel R, van der Burg B, Gruters RA, Geels FP, Schippers B, Lugtenberg B (1986) Siderophores and outer membrane proteins of antagonistic, plant-growth-stimulating, root-colonizing Pseudomonas spp. J Bacteriol 165:585–594

    Google Scholar 

  • Dileep Kumar BS, Dube HC (1992) Seed bacterization with a Pseudomonas for enhanced plant growth, yield and disease control. Soil Biol Biochem 24:539–542

    Article  Google Scholar 

  • El-Shanshoury AR (1989) Growth promotion of wheat seedlings by Streptomyces atroolivaceus. J Agron Crop Sci 163:109–114

    Article  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing Streptomycete Actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • Fallik E, Okon Y, Epstein E, Goldman A, Fischer M (1989) Identification and quantification of IAA and IBA in Azospirillum brasilense-inoculated maize roots. Soil Biol Biochem 21:147–153

    Article  CAS  Google Scholar 

  • Gupta N, Sahoo D, Bas UC (2010) Evaluation of in vitro solubilization potential of phosphate solubilising Streptomyces isolated from phyllosphere of Heritiera fomes (mangrove). Afr J Microbiol Res 4:136–142

    CAS  Google Scholar 

  • Jeon JS, Lee SS, Kim HY, Ahn TS, Song HG (2003) Plant growth promoting in soil by some inoculated microorganism. The J Microbiol 41:271–276

    CAS  Google Scholar 

  • M’sehli W, Jellali N, Dell’Orto M, Abdelly C, Zocchi G, Gharsalli M (2010) Responses of two lines of Medicago ciliaris to Fe deficiency under saline conditions. Plant Growth Regul doi: 10.1007/s10725-010-9561-y

  • Macagnan D, Romeiro RS, Pomella AWV, deSouza JT (2008) Production of lytic enzymes and siderophores, and inhibition of germination of basidiospores of Moniliophthora (ex Crinipellis) perniciosa by phylloplane Actinomycetes. Biol Control 47:309–314

    Article  CAS  Google Scholar 

  • Mahadevan B, Crawford DL (1997) Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb Tech 20:489–493

    Article  CAS  Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2003) Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus. Plant Growth Regul 40:97–106

    Article  CAS  Google Scholar 

  • Patten C, Glick B (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microb 68:3795–3801

    Article  CAS  Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouce systems. Annu Rev Phytopathol 39:103–133

    Article  CAS  Google Scholar 

  • Prokryl Z, Vancura V, Wurst M (1985) Auxin formation by rhizosphere bacteria as a factor of root growth. Biologia Plantarum 27:159–163

    Article  Google Scholar 

  • Rashid M, Khalil S, Ayub N, Alam S, Latif F (2004) Organic acids productions solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Sachdev DP, Chaudhari HG, Kasture VM, Dhavale DD, Chopade BA (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Biol 47:993–1000

    CAS  Google Scholar 

  • Sadeghi A, Hesan AR, Askari H, Aghighi S, Shahidi Bonjar GH (2006) Biological control potential of two Streptomyces isolates on Rhizoctonia solani, the causal agent of damping-off of sugar beet. Pak J Biol Sci 9:904–910

    Article  Google Scholar 

  • Sadeghi A, Hesan AR, Askari H, Naderi Qomi D, Farsi M, Majidi Hervan E (2009) Biocontrol of Rhizoctonia solani damping off of sugar beet with native Streptomyces strains under field conditions. Biocontrol Sci Techn 19:985–991

    Article  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biot 34:635–648

    Article  CAS  Google Scholar 

  • Shahidi Bonjar GH, Rashid Farrokhi P, Aghighi S, Shahidi Bonjar L, Aghelizadeh A (2005) Antifungal characterization of actinomycetes isolated from Kerman, Iran and their future prospects in biological control strategies in greenhouse and field conditions. Plant Pathol J 4:78–84

    Article  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microb 68:2161–2171

    Article  CAS  Google Scholar 

  • Trejo-Estrada SR, Paszczynski A, Crawford DL (1998) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biot 21:81–90

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Klimova SY, Shestakov AI, Botina SG, Netrusov AI (2007) Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch Microbiol 188:655–664

    Article  CAS  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcon R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG induced drought stress. Mycorrhiza 13:249–256

    Article  Google Scholar 

  • Waksman SA (1959) The Streptomyces, vol. 1. Williams and Wilkins Co., Baltimore

    Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferroxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  Google Scholar 

  • Zahran HH (1997) Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fertil Soils 25:211–223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, A., Karimi, E., Dahaji, P.A. et al. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28, 1503–1509 (2012). https://doi.org/10.1007/s11274-011-0952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0952-7

Keywords

Navigation