Skip to main content
Log in

Adsorption of cadmium ions from aqueous solutions using nano-montmorillonite: kinetics, isotherm and mechanism evaluations

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

With increasing industrial development, heavy metal pollution, e.g., cadmium (Cd) pollution, is increasingly serious in soil and water environments. This study investigated the sorption performance of nano-montmorillonite (NMMT) for Cd ions. Adsorption experiments were carried out to examine the effects of the initial metal ion concentration (22.4–224 mg/L), pH (2.5–7.5), contact time (2–180 min) and temperature (15–40 °C). A simulated acid rain solution was prepared to study the desorption of Cd adsorbed on NMMT. After the adsorption or desorption process, the supernatant was analyzed using a flame atomic absorption spectrometry method. The Cd removal rate increased as the pH and contact time increased but decreased as the initial metal ion concentration increased. The maximum adsorption capacity was estimated to be 17.61 mg/g at a Cd2+ concentration of 22.4 mg/L. The sorption process can be described by both the Langmuir and Freundlich models, and the kinetic studies revealed that the pseudo-second-order model fit the experimental data. The Cd desorption rate when exposed to simulated acid rain was less than 1%. NMMT possesses a good adsorption capacity for Cd ions. Additionally, ion exchange was the main adsorption mechanism, but some precipitation or surface adsorption also occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.A. Pereira, K.S. Sousa, G.R. Cavalcanti, Int. J. Biol. Macromol. 61, 471–478 (2013)

    Article  CAS  Google Scholar 

  2. J.H. Chen, Y.J. Wang, D.M. Zhou, Y.X. Cui, S.Q. Wang, Y.C. Chen, Environ. Progr. Sustain. Energy 29(2), 233–241 (2009)

    Article  Google Scholar 

  3. K.G. Akpomie, F.A. Dawodu, K.O. Adebowale, Alex. Eng. J. 54(3), 757–767 (2015)

    Article  Google Scholar 

  4. X. Zhao, T. Jiang, B. Du, Chemosphere 99, 41–48 (2014)

    Article  CAS  Google Scholar 

  5. Z. Zhu, C. Gao, Y.L. Wu, L.F. Sun, X.L. Huang, W. Ran, Q.R. Shen, Biores. Technol. 147, 378–386 (2013)

    Article  CAS  Google Scholar 

  6. H.B. Hadjltaief, A. Sdiri, W. Ltaief, P.D. Costa, M.E. Galvez, M.B. Zina, CR Chim. (2017). doi:10.1016/j.crci.2017.01.009

    Google Scholar 

  7. V. Masindi, W.M. Gitari, J. Clean. Prod. 112, 1077–1085 (2016)

    Article  CAS  Google Scholar 

  8. A. Sdiri, M. Khairy, S. Bouaziz, S. El-Safty, Appl. Clay Sci. 126, 89–97 (2016)

    Article  CAS  Google Scholar 

  9. C. Chen, H.B. Liu, T.H. Chen, D. Chen, R.L. Frost, Appl. Clay Sci. 118, 239–247 (2015)

    Article  CAS  Google Scholar 

  10. Y. Li, J.D. Wang, X.J. Wang, J.F. Wang, Ind. Eng. Chem. Res. 51(18), 6520–6528 (2012)

    Article  CAS  Google Scholar 

  11. R. Zhu, Q. Chen, Q. Zhou, Y.F. Xi, J.X. Zhu, H.P. He, Appl. Clay Sci. 123, 239–258 (2016)

    Article  CAS  Google Scholar 

  12. Y. Fernández-Nava, M. Ulmanu, I. Anger, E. Maranon, L. Castrillon, Water Air Soil Pollut. 215(1–4), 239–249 (2010)

    Google Scholar 

  13. D. Kołodyńska, J. Krukowska, P. Thomas, Chem. Eng. J. 307, 353–363 (2017)

    Article  Google Scholar 

  14. C.G. Lee, S. Lee, J.A. Park, C. Park, S.J. Lee, S.B. Kim, B. An, S.T. Yun, S.H. Lee, J.W. Choi, Chemosphere 166, 203–211 (2017)

    Article  CAS  Google Scholar 

  15. K.G. Bhattacharyya, S.S. Gupta, Adv. Coll. Interface. Sci. 140(2), 114–131 (2008)

    Article  CAS  Google Scholar 

  16. C. Piccirillo, S.I.A. Pereira, A.P.G.C. Marques, R.C. Pullar, D.M. Tobaldi, M.E. Pintado, P.M.L. Castro, J. Environ. Manag. 121, 87–95 (2013)

    Article  CAS  Google Scholar 

  17. K. Seifpanahi Shabani, F. Doulati Ardejani, K. Badii, M. Ebrahim Olya, Arab. J. Chem. 243, 201–207 (2013)

    Google Scholar 

  18. V. Masindi, W.M. Gitari, J. Environ. Chem. Eng. 3, 2416–2425 (2015)

    Article  Google Scholar 

  19. Z.L. Zhao, X.Q. Wang, C. Zhao, X.G. Zhu, S.Y. Du, J. Colloid Interface Sci. 345(2), 154–159 (2010)

    Article  CAS  Google Scholar 

  20. A. Günay, B. Ersoy, S. Dikmen, A. Evcin, Adsorption 19(2–4), 757–768 (2013)

    Article  Google Scholar 

  21. M. Vinuth, H.S.B. Naik, K.C. Sekhar, J. Manjanna, B.M. Vinoda, Procedia Earth Planet. Sci. 11, 275–283 (2015)

    Article  CAS  Google Scholar 

  22. H. Kohay, A. Izbitski, Y.G. Mishael, Environ. Sci. Technol. 49(15), 9280–9288 (2015)

    Article  CAS  Google Scholar 

  23. T.P. Chang, J.Y. Shih, K.M. Yang, T.C. Hsiao, J. Mater. Sc. 42(17), 7478–7487 (2007)

    Article  CAS  Google Scholar 

  24. P. Liu, L. Zhang, Sep. Purif. Technol. 58(1), 32–39 (2007)

    Article  CAS  Google Scholar 

  25. Z.Y. Wang, C. Wang, P.F. Wang, J. Qian, J. Hou, Y.H. Ao, Water Air Soil Pollut. 225(9), 2124 (2014)

    Article  Google Scholar 

  26. A. Agrawal, K.K. Sahu, J. Hazard. Mater. 137, 915–924 (2006)

    Article  CAS  Google Scholar 

  27. V. Masindi, M.W. Gitari, H. Tutu, M. Debeer, J. Water Process Eng. 15, 2–17 (2017)

    Article  Google Scholar 

  28. V. Masindi, W.M. Gitari, H. Tutu, J. Water Reuse Desalin. 382, 391 (2016)

    Google Scholar 

  29. B.F. UrbanoF, B.L. Rivas, J. Chem. Technol. Biotechnol. 89(2), 249–258 (2014)

    Article  Google Scholar 

  30. V. Masindi, M.W. Gitari, H. Tutu, M. DeBeer, J. Water Process Eng. 8, 227–240 (2015)

    Article  Google Scholar 

  31. W.H. Liu, Y.Y. Li, Q.X. Zhao, Research on and application of modified bentonite in deactivating and repairing heavy metal-contaminated soil (China Environmental Science Press, Beijing, 2014)

    Google Scholar 

  32. G.L. Guo, Y. Zhang, C. Zhang, S.J. Wang, Z.G. Yan, F.S. Li, Geoderma 200–201, 108–113 (2013)

    Article  Google Scholar 

  33. J. Madejova, Vib. Spectrosc. 31, 1–10 (2003)

    Article  CAS  Google Scholar 

  34. A. Sdiri, T. Higashi, R. Chaabouni, F. Jamoussi, Water Air Soil Pollut. 223, 1191–1204 (2011)

    Article  Google Scholar 

  35. M. Abbas, S. Kaddour, M. Trari, J. Ind. Eng. Chem. 20(3), 745–751 (2014)

    Article  CAS  Google Scholar 

  36. V. Masindi, W.M. Gitari, H. Tutu, Water Pract. Technol. 12, 186–201 (2017)

    Article  Google Scholar 

  37. D.Z. Wang, X. Jiang, W. Rao, J.Z. He, Ecol. Complex. 6(4), 432–437 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (2016YFD0801003) and the Natural Science Foundation of China (No. 41501526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutao Wang.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhao, C., Wang, S. et al. Adsorption of cadmium ions from aqueous solutions using nano-montmorillonite: kinetics, isotherm and mechanism evaluations. Res Chem Intermed 44, 1441–1458 (2018). https://doi.org/10.1007/s11164-017-3178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3178-y

Keywords

Navigation