Skip to main content
Log in

Material properties of portland cement paste with nano-montmorillonite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The nano-montmorillonite, which has characteristics of high aspect ratio and interaction between polymer chains and dispersed nanolayers, has been widely used in the development of new reinforced nanocomposite polymers to improve their mechanical properties. Since a potential pozzolanic reaction may occur between Portland cement paste and high amount of silicon dioxide (SiO2) in nano-montmorillonite, the effects of introduction of montmorillonite to Portland cement-based material on the improvement of matrix properties of cement paste is of great interest in the construction industry. In this study, a liquid-form of nano-montmorillonite particle with a planar diameter of about 100 nm were incorporated into the Portland cement paste at five different dosages and analyzed at four different ages to identify the nanosizing effects on material properties of such cement-based composite. Experimental results show that the composite with 0.60% and 0.40% of added nano-montmorillonite by weight of cement have the optimum compressive strength and permeability coefficient, respectively, in which the increase of compressive strength is about 13.24%, and the decrease of permeability coefficient about 49.95%. Microstructural properties through the analyses of XRD, DSC, NMR, and MIP also indicate that the microstructures of cement paste with nano-montmorillonite contain more dense solid material and more stable bonding framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jortner J, Rao CNR (2002) Pure Appl Chem 74:1491

    CAS  Google Scholar 

  2. Pitkethly MJ (2004) Material Today 7:20

    Article  Google Scholar 

  3. Dellisanti F, Valdre G (2005) Appl Clay Sci 28:233

    Article  CAS  Google Scholar 

  4. Ahn T, Desai CS (1999) Inter J for Num Ana Meth In Geo 23:1893

    Article  Google Scholar 

  5. Ryan CR, Day SR (2002) Geo Spec Pub 1161:713

    Google Scholar 

  6. Fukushima Y, Inagaki S (1987) J Inclu Phen 5:473

    Article  CAS  Google Scholar 

  7. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185

    CAS  Google Scholar 

  8. Lebaron PC, Wang Z, Pinnavaia TJ (1999) Appl Clay Sci 15:11

    Article  CAS  Google Scholar 

  9. Giannelis E (1996) Adv Mater 8:29

    Article  CAS  Google Scholar 

  10. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1

    Article  Google Scholar 

  11. Taylor HFW (2000) Cement chemistry. Academic Press, London, p 305

    Google Scholar 

  12. Zhang X, Chang W, Zhang T, Ong CK (2000) J Am Cera Soc 83:2600

    Article  CAS  Google Scholar 

  13. He C, Makovicky E, Osbaeck B (1996) Appl Clay Sci 10:351

    Article  CAS  Google Scholar 

  14. Cabrera JG, Lynsdale CJ (1988) Mag Conc Res 40:177

    CAS  Google Scholar 

  15. Picandet V, Khelidj A, Bastian G (2001) Cem Conc Res 31:1525

    Article  CAS  Google Scholar 

  16. Loosveldt H, Lafhaj Z, Skoczylas F (2002) Cem Conc Res 32:1357

    Article  CAS  Google Scholar 

  17. Alshamsi AM, Imran HDA (2002) Cem Conc Res 32:923

    Article  CAS  Google Scholar 

  18. Dhir RK, Hewlett PC, Chan NY (1989) Mag Conc Res 41:87

    Article  CAS  Google Scholar 

  19. Joint Committee on Powder Diffraction Standards, JCPDS-International center for diffraction data (2000)

  20. Sha W, O’Neill EA, Guo Z (1999) Cem Concr Res 29:1487

    Article  CAS  Google Scholar 

  21. Sha W, Pereira GB (2001) Cem Concr Comp 23:455

    Article  CAS  Google Scholar 

  22. Kurajica S, Bezjak A, Tkalcec E (1996) Therm Acta 288:123

    Article  CAS  Google Scholar 

  23. Lippmaa E, Magi M, Samoson A, Engelhardt G, Grimmer AR (1980) J Am Ceram Soc 102:4889

    CAS  Google Scholar 

  24. Ida T, Hibino H, Toraya H (2001) J Appl Cryst 34:144

    Article  CAS  Google Scholar 

  25. Justnes H, Meland I, Bjoergum JO, Krane J, Skjetne T (1989) SINTEF FCB Report, p 1

  26. Johansson K, Larsson C, Antzutkin ON, Forsling W, Kota HR, Ronin V (1999) Cem Concr Res 29:1575

    Article  CAS  Google Scholar 

  27. Cong X, Kirkpatrick RJ (1996) Adv Cem Bas Mat 3:133

    Article  CAS  Google Scholar 

  28. Winslow DN (1984) Surf Colloid Sci 13:259

    CAS  Google Scholar 

  29. Good RJ (1984) Surf Colloid Sci 13:283

    CAS  Google Scholar 

  30. Jenkins RG, Rao MB (1984) Powder Technol 38:177

    Article  CAS  Google Scholar 

  31. Winslow DN, Diamond S (1970) J Mater 5:564

    Google Scholar 

  32. Ji X, Chan SYN, Feng N (1997) Cem Concr Res 27:1691

    Article  CAS  Google Scholar 

  33. Indelicato F (1990) Mater Struct 23:289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the NSC, Taiwan, under Contract NSC-92–2211-E-011–052 which is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta-Peng Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, TP., Shih, JY., Yang, KM. et al. Material properties of portland cement paste with nano-montmorillonite. J Mater Sci 42, 7478–7487 (2007). https://doi.org/10.1007/s10853-006-1462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1462-0

Keywords

Navigation