Skip to main content
Log in

Characterization of gibberellin-signalling elements during plum fruit ontogeny defines the essentiality of gibberellin in fruit development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Fruit growth is a coordinated, complex interaction of cell division, differentiation and expansion. Gibberellin (GA) involvement in the reproductive events is an important aspect of GA effects. Perennial fruit-trees such as plum (Prunus salicina L.) have distinct features that are economically important and provide opportunities to dissect specific GA mechanisms. Currently, very little is known on the molecular mechanism(s) mediating GA effects on fruit development. Determination of bioactive GA content during plum fruit ontogeny revealed that GA1 and GA4 are critical for fruit growth and development. Further, characterization of several genes involved in GA-signalling showed that their transcriptional regulation are generally GA-dependent, confirming their involvement in GA-signalling. Based on these results, a model is presented elucidating how the potential association between GA and other hormones may contribute to fruit development. PslGID1 proteins structure, Y2H and BiFC assays indicated that plum GA-receptors can form a complex with AtDELLA-repressors in a GA-dependent manner. Moreover, phenotypical-, molecular- and GA-analyses of various Arabidopsis backgrounds ectopically expressing PslGID1 sequences provide evidence on their role as active GA-signalling components that mediate GA-responsiveness. Our findings support the critical contribution of GA alone or in association with other hormones in mediating plum fruit growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ariizumi T, Murase K, Sun TP, Steber CM (2008) Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell 20:2447–2459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Augustí M, Almela V, Andreu I, Juan M, Zacarias L (1999) Synthetic auxin 3,5,6-TPA promotes fruit development and climacteric in Prunus persica L. Batsch. J Hortic Sci Biotech 74:556–560

    Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  PubMed  Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bjorklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511

    Article  PubMed  Google Scholar 

  • Bukovac MJ, Nakagawa S (1967) Comparative potency of gibberellins in inducing parthenocarpic fruit growth in Malus sylvestris Mill. Experientia 23:865

    Article  CAS  PubMed  Google Scholar 

  • Bukvoac MJ (1963) Induction of parthenocarpic growth of apple fruits with gibberellins A3 and A4. Bot Gaz 124:191–195

    Article  Google Scholar 

  • Bukvoac MJ, Yuda E (1979) Endogenous plant growth substances in developing fruit of Prunus cerasus L. Plant Physiol 63:129–132

    Article  Google Scholar 

  • Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D et al (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Crane J (1964) Growth substances in fruit setting and development. Annu Rev Plant Physiol 15:303–326

    Article  CAS  Google Scholar 

  • Csukasi F, Osorio S, Gutierrez JR, Kitamura J, Giavalisco P, Nakajima M et al (2011) Gibberellin biosynthesis and signalling during development of the strawberry receptacle. New Phytol 191:376–390

    Article  CAS  PubMed  Google Scholar 

  • de Jong M, Mariani C, Vriezen WH (2009) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532

    Article  PubMed  Google Scholar 

  • Dill A, Sun TP (2001) Synergistic de-repression of gibberellin signalling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777–785

    CAS  PubMed  Google Scholar 

  • Dunberg A, Odén PC (1983) Gibberellins and conifers. In: Crozier A (ed) The biochemistry and physiology of gibberellins. Praeger, New York, pp 221–295

    Google Scholar 

  • El-Sharkawy I, Kim WS, El-Kereamy A, Jayasankar S, Svircev AM, Brown DCW (2007) Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.). J Exp Bot 58:3631–3643

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy I, Kim WS, Jayasankar S, Svircev AM, Brown DCW (2008) Differential regulation of four members of ACC synthase gene family in plum. J Exp Bot 59:2009–2027

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy I, Sherif S, Mila I, Bouzayen M, Jayasankar S (2009) Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening. J Exp Bot 60:907–922

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy I, Mila I, Bouzayen M, Jayasankar S (2010) Regulation of two germin-like protein genes during plum fruit development. J Exp Bot 61:1761–1770

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy I, Sherif S, Mahboob A, Abubaker K, Bouzayen M, Jayasankar S (2012a) Expression of auxin-binding protein1 during plum fruit ontogeny supports the potential role of auxin in initiating and enhancing climacteric ripening. Plant Cell Rep 31:1911–1921

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy I, El Kayal W, Prasath D, Fernández H, Bouzayen M, Svircev AM et al (2012b) Identification and genetic characterization of a gibberellin 2-oxidase gene that controls tree stature and reproductive growth in plum. J Exp Bot 63:1225–1239

    Article  CAS  PubMed  Google Scholar 

  • Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  CAS  PubMed  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    PubMed Central  PubMed  Google Scholar 

  • Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ et al (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “Inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell 21:1328–1339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hedden P (2008) Plant biology: gibberellins close the lid. Nature 456:455–456

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson DI (1968) Gibberellin in the growth of peach and apricot fruits. Aust J Biol Sci 21:209–215

    CAS  Google Scholar 

  • Lee LY, Fang MJ, Kuang LY, Gelvin SB (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein–protein interactions in living plant cells. Plant Meth 4:24

    Article  Google Scholar 

  • Lodhi F, Bradley MV, Crane JC (1969) Auxins and gibberellin-like substances in parthenocarpic and non-parthenocarpic syconia of Ficus carica L., cv. King. Plant Physiol 44:555–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mesejo C, Yuste R, Martínez-Fuentes A, Reig C, Iglesias DJ, Primo-Millo E, Agustí M (2013) Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina). Physiol Plant 148:87–96

    Article  CAS  PubMed  Google Scholar 

  • Miller AN, Walsh CS, Cohen JD (1987) Measurement of indole-3-acetic acid in peach fruits (Prunus persica L. Batsch cv. Redhaven) during development. Plant Physiol 84:491–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M et al (2006) Identification and characterization of Arabidopsis gibberellin receptors. Plant J 46:880–889

    Article  CAS  PubMed  Google Scholar 

  • Ngo P, Ozga JA, Reinecke DM (2002) Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp. Plant Mol Biol 49:439–448

    Article  CAS  PubMed  Google Scholar 

  • Nitsch JP (1970) Hormonal factors in growth and development. In: Hulme AC (ed) The biochemistry of fruits and their products. Academic Press, London, New York, pp 427–472

    Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ross JJ, O’Neill DP, Wolbang CM, Symons GM, Reid JB (2002) Auxin-gibberellin interactions and their role in plant growth. J Plant Growth Regul 20:346–353

    Google Scholar 

  • Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111

    Article  CAS  PubMed  Google Scholar 

  • Serrani JC, Sanjuán R, Ruiz-Rivero O, Fos M, García Martínez JL (2007) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serrano M, Martínez-Romero D, Zuzunaga M, Riquelme F, Valero D (2007) Calcium, polyamine and gibberellin treatments to improve postharvest fruit quality. In: Dris R, Jain SM (eds) Production practices and quality assessment of food crops. Vol. 4. Postharvest treatment and technology. Kluwer Academic Publishers, Dordrecht, pp 55–68

    Google Scholar 

  • Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H et al (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456:520–523

    Article  CAS  PubMed  Google Scholar 

  • Sponsel VM, Hedden P (2004) Gibberellin biosynthesis and inactivation. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action!. Kluwer Academic Publishers, Dordrecht, pp 63–94

    Google Scholar 

  • Sun TP (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:567–570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signalling in plants. Ann Rev Plant Biol 55:197–223

    Article  CAS  Google Scholar 

  • Thomas SG, Philips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  CAS  PubMed  Google Scholar 

  • Tyler L, Thomas SG, Hu JH, Dill A, Alonso JM, Ecker JR et al (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008–1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M et al (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Nakajim M, Katoh E, Ohmiya H, Asano K, Saji S et al (2007) Molecular interactions of a soluble gibberellin Receptor, GID1, with a rice DELLA protein, SLR1, and Gibberellin. Plant Cell 19:2140–2155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vargas AM, Le Cunff L, This P, Ibanez J, de Andres MT (2013) VvGAI1 polymorphisms associate with variation for berry traits in grapevine. Euphytica 191:85–91

    Article  CAS  Google Scholar 

  • Wang T, Tomic S, Gabdoulline RR, Wade RC (2004) How optimal are the binding energetics of barnase and barstar? Biophys J 87:1618–1630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134:769–776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu YL, Li L, Gage DA, Zeevaart JAD (1999) Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis. Plant Cell 11:927–936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Ann Rev Plant Biol 59:225–251

    Article  CAS  Google Scholar 

  • Yamaguchi I, Takahashi N (1976) Change of gibberellin and abscisic acid content during fruit development of Prunus persica. Plant Cell Physiol 17:611–614

    CAS  Google Scholar 

  • Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP (2007) Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol 17:1225–1230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Stephen G. Thomas for providing gid1a-1/gid1c-1 double mutant, Dr. Stanton Gelvin for providing the EYFP vectors. We also thank the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) and Early Researchers Award of the Ontario Ministry of Innovation for financial assistance. We thank Dr. Bouzayen for help with subcellular localization experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Jayasankar.

Additional information

PslGID1b (JX569804); gPslGID1b (JX569802); PslGID1c (JX569805); gPslGID1c (JX569803); PslGA3ox1 (JX569806).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1836 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sharkawy, I., Sherif, S., El Kayal, W. et al. Characterization of gibberellin-signalling elements during plum fruit ontogeny defines the essentiality of gibberellin in fruit development. Plant Mol Biol 84, 399–413 (2014). https://doi.org/10.1007/s11103-013-0139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0139-8

Keywords

Navigation