Skip to main content
Log in

Upper Large Deviations Bound for Singular-Hyperbolic Attracting Sets

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We obtain a exponential large deviation upper bound for continuous observables on suspension semiflows over a non-uniformly expanding base transformation with non-flat singularities and/or discontinuities, where the roof function defining the suspension behaves like the logarithm of the distance to the singular/discontinuous set of the base map. To obtain this upper bound, we show that the base transformation exhibits exponential slow recurrence to the singular set. The results are applied to semiflows modeling singular-hyperbolic attracting sets of \(C^2\) vector fields. As corollary of the methods we obtain results on the existence of physical measures and their statistical properties for classes of piecewise \(C^{1+}\) expanding maps of the interval with singularities and discontinuities. We are also able to obtain exponentially fast escape rates from subsets without full measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We write \(A+B\) the union of the disjoint subsets A and B.

  2. See [39] for the definition of p-variation.

  3. See [18, Section 6.1] where it is shown how to get \(h_*\mu ^i_F=\mu ^i_f\).

  4. The subset \({\mathcal {S}}\) can be identified with \(h(\Gamma _0)\) while \({\mathcal {D}}{\setminus }{\mathcal {S}}\) can be identified with \(h(\Gamma _1)\).

  5. The proof of [41, Theorem 2.7] based on a combination of [60] with [42] does not assume that the measure has only non-zero Lyapunov exponents: it also applies to non-uniformly partially hyperbolic measures.

  6. For if \(y\in W^u(x)\cap U\) and \(x\in \Lambda \), then \(d(X^{-t}(y),X^{-t}(y))\xrightarrow [t\rightarrow +\,\infty ]{}0\) thus \(X^{-t}(y)\subset U\) for all \(t\ge 0\), that is, \(y\in \cap _{t\ge 0}X^t(U)=\Lambda \).

  7. A map is regular if \(f_*{\text {Leb}}\ll {\text {Leb}}\), that is, \({\text {Leb}}\)-null sets are not images of positive \({\text {Leb}}\)-measure subsets.

  8. We write \( f\approx g \) if the ratio f / g is bounded above and below independently of \(c\in {\mathcal {S}}, p\ge \rho (c)\).

  9. Here it is important to have \({\mathcal {P}}_0\) defined in \(\Delta (c,\delta _c)\) for \(c\in {\mathcal {S}}\) with \(\rho (c)\) the minimum possible value such that \(a_p<\delta _c\), to have a tight control of \(|x_i-y_i|\).

  10. Because \(2\delta _c\) is the size of one monotonous branch of f having c in its boundary, so \(\sigma \cdot 2\delta _c<1\).

  11. The requirement that the splitting is done only if the interval \(f^{n+1}\omega \) intersects more than three elements of \({\mathcal {P}}_0\) is crucial to ensure that a certain proportion of this interval goes to each subinterval; see Fig. 6, Remarks 4.6(1) and 4.7.

  12. All \(M(c,p),p>\rho (c),c\in {\mathcal {D}}\) are smaller than any \(M(c',\rho -1), c'\in {\mathcal {D}}{\setminus }{\mathcal {S}}\).

  13. Recall Remark 4.4: the length of M(cp) does not depend on c for \(p\ge \rho _0\).

  14. See the definition of \(C_0\) after Lemma 4.5: the restriction on \(\xi \) ensures \(S(\rho ,\xi )\approx \sum _{p>\rho }p^{-\theta }\) with \(\theta >1\).

References

  1. Alves, J.: Statistical analysis of non-uniformly expanding dynamical systems. Publicações Matemáticas do IMPA (IMPA Mathematical Publications). Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2003. XXIV Colóquio Brasileiro de Matemática (2003). (24th Brazilian Mathematics Colloquium)

  2. Alves, J.F., Araujo, V.: Random perturbations of nonuniformly expanding maps. Astérisque 286, 25–62 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Alves, J.F., Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140(2), 351–398 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves, J.F., Freitas, J.M., Luzzatto, S., Vaienti, S.: From rates of mixing to recurrence times via large deviations. Adv. Math. 228(2), 1203–1236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alves, J.F., Luzzatto, S., Pinheiro, V.: Lyapunov exponents and rates of mixing for one-dimensional maps. Ergod. Theory Dyn. Syst. 24(3), 637–657 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alves, J.F., Luzzatto, S., Pinheiro, V.: Markov structures and decay of correlations for non-uniformly expanding dynamical systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(6), 817–839 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Araújo, V.: Large deviations bound for semiflows over a non-uniformly expanding base. Bull. Braz. Math. Soc. (N.S.) 38(3), 335–376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Araujo, V., Arbieto, A., Salgado, L.: Dominated splittings for flows with singularities. Nonlinearity 26(8), 2391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Araujo, V., Galatolo, S., Pacifico, M.J.: Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors. Mathematische Zeitschrift 276(3–4), 1001–1048 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Araújo, V., Galatolo, S., Pacifico, M.J.: Erratum to: Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors. Mathematische Zeitschrift 282(1), 615–621 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Araújo, V., Melbourne, I.: Exponential decay of correlations for nonuniformly hyperbolic flows with a \(C^{1+\alpha }\) stable foliation, including the classical Lorenz attractor. Annales Henri Poincaré 17, 2975–3004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Araujo, V., Melbourne, I.: Existence and smoothness of the stable foliation for sectional hyperbolic attractors. Bull. Lond. Math. Soc. 49(2), 351–367 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Araujo, V., Melbourne, I.: Mixing properties and statistical limit theorems for singular hyperbolic flows without a smooth stable foliation. arXiv:1711.08665 (2017)

  14. Araujo, V., Melbourne, I., Varandas, P.: Rapid mixing for the lorenz attractor and statistical limit laws for their time-1 maps. Commun. Math. Phys. 340(3), 901–938 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Araújo, V., Pacifico, M.J.: Large deviations for non-uniformly expanding maps. J. Stat. Phys. 125(2), 415–457 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Araujo, V., Pacifico, M.J.: Physical measures for infinite-modal maps. Fundam. Math. 203, 211–262 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Araújo, V., Pacifico, M.J.: Three-Dimensional Flows, Volume 53 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics). Springer, Heidelberg (2010). (with a foreword by Marcelo Viana)

    Google Scholar 

  18. Araújo, V., Pujals, E.R., Pacifico, M.J., Viana, M.: Singular-hyperbolic attractors are chaotic. Trans. A.M.S. 361, 2431–2485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Barreira, L., Pesin, Y.: Nonuniform Hyperbolicity Volume 115 of Encyclopedia of Mathematics and Its Applications. Dynamics of Systems with Nonzero Lyapunov Exponents. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  20. Barreira, L., Pesin, Y.: Introduction to Smooth Ergodic Theory, Volume 148 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2013)

    Book  MATH  Google Scholar 

  21. Benedicks, M., Carleson, L.: On iterations of \(1-ax^2\) on \((-1,1)\). Ann. Math. 122, 1–25 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. 133, 73–169 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Benedicks, M., Young, L.S.: Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps. Ergod. Theory Dyn. Syst. 12, 13–37 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Benedicks, M., Young, L.S.: SBR-measures for certain Hénon maps. Invent. Math. 112, 541–576 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Benedicks, M., Young, L.S.: Markov extensions and decay of correlations for certain Hénon maps. Astérisque 261, 13–56 (2000)

    MATH  Google Scholar 

  26. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Volume 470 of Lecture Notes in Mathematics. Springer, Berlin (1975)

    Book  Google Scholar 

  27. Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Castro, A., Varandas, P.: Equilibrium states for non-uniformly expanding maps: decay of correlations and strong stability. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(2), 225–249 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Collet, P., Tresser, C.: Ergodic theory and continuity of the Bowen–Ruelle measure for geometrical Lorenz flows. Fyzika 20, 33–48 (1988)

    Google Scholar 

  30. de Melo, W., van Strien, S.: One-dimensional dynamics. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  31. Díaz-Ordaz, K., Holland, M.P., Luzzatto, S.: Statistical properties of one-dimensional maps with critical points and singularities. Stoch. Dyn. 6(4), 423–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Field, M., Melbourne, I., Törok, A.: Stability of mixing and rapid mixing for hyperbolic flows. Ann. Math. 166, 269–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Freitas, J.M.: Continuity of SRB measure and entropy for Benedicks–Carleson quadratic maps. Nonlinearity 18, 831–854 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gouëzel, S.: Decay of correlations for nonuniformly expanding systems. Bull. Soc. Math. Fr. 134(1), 1–31 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gouezel, S.: Almost sure invariance principle for dynamical systems by spectral methods. Ann. Probab. 38(4), 1639–1671 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hofbauer, F., Keller, G.: Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z 180(1), 119–140 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Holland, M., Melbourne, I.: Central limit theorems and invariance principles for Lorenz attractors. J. Lond. Math. Soc. (2) 76(2), 345–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, Volume 54 of Encyclopeadia Applied Mathematics. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  39. Keller, G.: Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrsch. Verw. Gebiete 69(3), 461–478 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kifer, Y.: Large deviations in dynamical systems and stochastic processes. Trans. Am. Math. Soc. 321(2), 505–524 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ledrappier, F.: Propriétés ergodiques des mesures de sinaï. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 59(1), 163–188 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ledrappier, F., Strelcyn, J.-M.: A proof of the estimation from below in Pesin’s entropy formula. Ergod. Theory Dyn. Syst. 2(2), 203–219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ledrappier, F., Young, L.S.: The metric entropy of diffeomorphisms I. Characterization of measures satisfying Pesin’s entropy formula. Ann. Math. 122, 509–539 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Luzzatto, S., Melbourne, I.: Statistical properties and decay of correlations for interval maps with critical points and singularities. Commun. Math. Phys. 320(1), 21–35 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Luzzatto, S., Viana, M.: Positive Lyapunov exponents for Lorenz-like families with criticalities. Astérisque 261, 201–237 (2000). (Géométrie complexe et systèmes dynamiques (Orsay 1995))

    MathSciNet  MATH  Google Scholar 

  46. Mañé, R.: Ergodic Theory and Differentiable Dynamics. Springer, New York (1987)

    Book  MATH  Google Scholar 

  47. Melbourne, I.: Rapid decay of correlations for nonuniformly hyperbolic flows. Trans. Am. Math. Soc. 359(5), 2421–2441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Melbourne, I., Nicol, M.: Almost sure invariance principle for nonuniformly hyperbolic systems. Comm. Math. Phys. 260(1), 131–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Metzger, R., Morales, C.: Sectional-hyperbolic systems. Ergod. Theory Dyn. Syst. 28, 1587–1597 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mora, L., Viana, M.: Abundance of strange attractors. Acta Math. 171(1), 1–71 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Morales, C.A.: Examples of singular-hyperbolic attracting sets. Dyn. Syst. Int. J. 22(3), 339–349 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Morales, C.A., Pacifico, M.J., Pujals, E.R.: Singular hyperbolic systems. Proc. Am. Math. Soc. 127(11), 3393–3401 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. Pacifico, M.J., Rovella, A., Viana, M.: Infinite-modal maps with global chaotic behavior. Ann. Math. (2) 148(2), 441–484 (1998). (Corrigendum in Annals of Math. 149, page 705, (1999))

    Article  MathSciNet  MATH  Google Scholar 

  54. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  55. Palmer, K.: Shadowing in Dynamical Systems: Theory and Applications, Volume 501 of Mathematics and Its Applications. Springer, Berlin (2010)

    Google Scholar 

  56. Pesin, Y., Sinai, Y.: Gibbs measures for partially hyperbolic attractors. Ergod. Theory Dyn. Syst. 2, 417–438 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  57. Pesin, Y.B.: Lectures on Partial Hyperbolicity and Stable Ergodicity. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zurich (2004)

    Book  MATH  Google Scholar 

  58. Philipp, W., Stout, W.: Almost Sure Invariance Principles for Partial Sums of Weakly Dependent Random Variables. Memoirs of the American Mathematical Society. American Mathematical Society, Providence (1975)

    Book  MATH  Google Scholar 

  59. Ruelle, D.: A measure associated with Axiom A attractors. Am. J. Math. 98, 619–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat. 9, 83–87 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ruelle, D.: The thermodynamical formalism for expanding maps. Commun. Math. Phys. 125, 239–262 (1989)

    Article  MATH  Google Scholar 

  62. Ruelle, D.: Thermodynamic Formalism. The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edn. Cambridge Mathematical Library, Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  63. Sataev, E.A.: Some properties of singular hyperbolic attractors. Sbornik Math. 200(1), 35 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Sataev, E.A.: Invariant measures for singular hyperbolic attractors. Sbornik Math. 201(3), 419 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. Shub, M.: Global Stability of Dynamical Systems. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  66. Sinai, Y.: Gibbs measures in ergodic theory. Russ. Math. Surv. 27, 21–69 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  67. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris 328(Série I), 1197–1202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  68. Viana, M.: What’s new on Lorenz strange attractor. Math. Intell. 22(3), 6–19 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  69. Waddington, S.: Large deviations asymptotics for Anosov flows. Annales de l’Institut Henri Poincare, Section C 13(4), 445–484 (1996)

    MathSciNet  MATH  Google Scholar 

  70. Young, L.S.: Some large deviation results for dynamical systems. Trans. Am. Math. Soc. 318(2), 525–543 (1990)

    MathSciNet  MATH  Google Scholar 

  71. Young, L.S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585–650 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referee for the careful reading of the manuscript and the many detailed questions which greatly helped to improve the statements of the results and the readability of the text. This is the Ph.D. thesis of A. Souza and part of the PhD thesis work of E. Trindade at the Instituto de Matemática e Estatística-Universidade Federal da Bahia (UFBA, Salvador) under a CAPES (Brazil) scholarship. Both thank the Mathematics and Statistics Institute at UFBA for the use of its facilities and the financial support from CAPES during their M.Sc. and Ph.D. studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Araujo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Vitor Araujo was partially supported by CNPq-Brazil; and Andressa Souza and Edvan Trindade were partially supported by CAPES-Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, V., Souza, A. & Trindade, E. Upper Large Deviations Bound for Singular-Hyperbolic Attracting Sets. J Dyn Diff Equat 31, 601–652 (2019). https://doi.org/10.1007/s10884-018-9723-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9723-6

Keywords

Mathematics Subject Classification

Navigation