Upper Large Deviations Bound for Singular-Hyperbolic Attracting Sets

  • Vitor AraujoEmail author
  • Andressa Souza
  • Edvan Trindade


We obtain a exponential large deviation upper bound for continuous observables on suspension semiflows over a non-uniformly expanding base transformation with non-flat singularities and/or discontinuities, where the roof function defining the suspension behaves like the logarithm of the distance to the singular/discontinuous set of the base map. To obtain this upper bound, we show that the base transformation exhibits exponential slow recurrence to the singular set. The results are applied to semiflows modeling singular-hyperbolic attracting sets of \(C^2\) vector fields. As corollary of the methods we obtain results on the existence of physical measures and their statistical properties for classes of piecewise \(C^{1+}\) expanding maps of the interval with singularities and discontinuities. We are also able to obtain exponentially fast escape rates from subsets without full measure.


Singular-hyperbolic attracting set Large deviations Exponentially slow approximation Piecewise expanding transformation with singularities 

Mathematics Subject Classification

Primary 37D30 Secondary 37C40 37C10 37D45 37D35 37D25 



We thank the referee for the careful reading of the manuscript and the many detailed questions which greatly helped to improve the statements of the results and the readability of the text. This is the Ph.D. thesis of A. Souza and part of the PhD thesis work of E. Trindade at the Instituto de Matemática e Estatística-Universidade Federal da Bahia (UFBA, Salvador) under a CAPES (Brazil) scholarship. Both thank the Mathematics and Statistics Institute at UFBA for the use of its facilities and the financial support from CAPES during their M.Sc. and Ph.D. studies.


  1. 1.
    Alves, J.: Statistical analysis of non-uniformly expanding dynamical systems. Publicações Matemáticas do IMPA (IMPA Mathematical Publications). Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2003. XXIV Colóquio Brasileiro de Matemática (2003). (24th Brazilian Mathematics Colloquium)Google Scholar
  2. 2.
    Alves, J.F., Araujo, V.: Random perturbations of nonuniformly expanding maps. Astérisque 286, 25–62 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alves, J.F., Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140(2), 351–398 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Alves, J.F., Freitas, J.M., Luzzatto, S., Vaienti, S.: From rates of mixing to recurrence times via large deviations. Adv. Math. 228(2), 1203–1236 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Alves, J.F., Luzzatto, S., Pinheiro, V.: Lyapunov exponents and rates of mixing for one-dimensional maps. Ergod. Theory Dyn. Syst. 24(3), 637–657 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Alves, J.F., Luzzatto, S., Pinheiro, V.: Markov structures and decay of correlations for non-uniformly expanding dynamical systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(6), 817–839 (2005)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Araújo, V.: Large deviations bound for semiflows over a non-uniformly expanding base. Bull. Braz. Math. Soc. (N.S.) 38(3), 335–376 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Araujo, V., Arbieto, A., Salgado, L.: Dominated splittings for flows with singularities. Nonlinearity 26(8), 2391 (2013)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Araujo, V., Galatolo, S., Pacifico, M.J.: Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors. Mathematische Zeitschrift 276(3–4), 1001–1048 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Araújo, V., Galatolo, S., Pacifico, M.J.: Erratum to: Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors. Mathematische Zeitschrift 282(1), 615–621 (2016)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Araújo, V., Melbourne, I.: Exponential decay of correlations for nonuniformly hyperbolic flows with a \(C^{1+\alpha }\) stable foliation, including the classical Lorenz attractor. Annales Henri Poincaré 17, 2975–3004 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Araujo, V., Melbourne, I.: Existence and smoothness of the stable foliation for sectional hyperbolic attractors. Bull. Lond. Math. Soc. 49(2), 351–367 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Araujo, V., Melbourne, I.: Mixing properties and statistical limit theorems for singular hyperbolic flows without a smooth stable foliation. arXiv:1711.08665 (2017)
  14. 14.
    Araujo, V., Melbourne, I., Varandas, P.: Rapid mixing for the lorenz attractor and statistical limit laws for their time-1 maps. Commun. Math. Phys. 340(3), 901–938 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Araújo, V., Pacifico, M.J.: Large deviations for non-uniformly expanding maps. J. Stat. Phys. 125(2), 415–457 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Araujo, V., Pacifico, M.J.: Physical measures for infinite-modal maps. Fundam. Math. 203, 211–262 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Araújo, V., Pacifico, M.J.: Three-Dimensional Flows, Volume 53 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics). Springer, Heidelberg (2010). (with a foreword by Marcelo Viana)Google Scholar
  18. 18.
    Araújo, V., Pujals, E.R., Pacifico, M.J., Viana, M.: Singular-hyperbolic attractors are chaotic. Trans. A.M.S. 361, 2431–2485 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Barreira, L., Pesin, Y.: Nonuniform Hyperbolicity Volume 115 of Encyclopedia of Mathematics and Its Applications. Dynamics of Systems with Nonzero Lyapunov Exponents. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  20. 20.
    Barreira, L., Pesin, Y.: Introduction to Smooth Ergodic Theory, Volume 148 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2013)zbMATHGoogle Scholar
  21. 21.
    Benedicks, M., Carleson, L.: On iterations of \(1-ax^2\) on \((-1,1)\). Ann. Math. 122, 1–25 (1985)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. 133, 73–169 (1991)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Benedicks, M., Young, L.S.: Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps. Ergod. Theory Dyn. Syst. 12, 13–37 (1992)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Benedicks, M., Young, L.S.: SBR-measures for certain Hénon maps. Invent. Math. 112, 541–576 (1993)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Benedicks, M., Young, L.S.: Markov extensions and decay of correlations for certain Hénon maps. Astérisque 261, 13–56 (2000)zbMATHGoogle Scholar
  26. 26.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Volume 470 of Lecture Notes in Mathematics. Springer, Berlin (1975)Google Scholar
  27. 27.
    Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Castro, A., Varandas, P.: Equilibrium states for non-uniformly expanding maps: decay of correlations and strong stability. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(2), 225–249 (2013)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Collet, P., Tresser, C.: Ergodic theory and continuity of the Bowen–Ruelle measure for geometrical Lorenz flows. Fyzika 20, 33–48 (1988)Google Scholar
  30. 30.
    de Melo, W., van Strien, S.: One-dimensional dynamics. Springer, Berlin (1993)zbMATHGoogle Scholar
  31. 31.
    Díaz-Ordaz, K., Holland, M.P., Luzzatto, S.: Statistical properties of one-dimensional maps with critical points and singularities. Stoch. Dyn. 6(4), 423–458 (2006)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Field, M., Melbourne, I., Törok, A.: Stability of mixing and rapid mixing for hyperbolic flows. Ann. Math. 166, 269–291 (2007)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Freitas, J.M.: Continuity of SRB measure and entropy for Benedicks–Carleson quadratic maps. Nonlinearity 18, 831–854 (2005)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Gouëzel, S.: Decay of correlations for nonuniformly expanding systems. Bull. Soc. Math. Fr. 134(1), 1–31 (2006)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Gouezel, S.: Almost sure invariance principle for dynamical systems by spectral methods. Ann. Probab. 38(4), 1639–1671 (2010)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Hofbauer, F., Keller, G.: Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z 180(1), 119–140 (1982)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Holland, M., Melbourne, I.: Central limit theorems and invariance principles for Lorenz attractors. J. Lond. Math. Soc. (2) 76(2), 345–364 (2007)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, Volume 54 of Encyclopeadia Applied Mathematics. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  39. 39.
    Keller, G.: Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrsch. Verw. Gebiete 69(3), 461–478 (1985)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Kifer, Y.: Large deviations in dynamical systems and stochastic processes. Trans. Am. Math. Soc. 321(2), 505–524 (1990)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Ledrappier, F.: Propriétés ergodiques des mesures de sinaï. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 59(1), 163–188 (1984)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Ledrappier, F., Strelcyn, J.-M.: A proof of the estimation from below in Pesin’s entropy formula. Ergod. Theory Dyn. Syst. 2(2), 203–219 (1982)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Ledrappier, F., Young, L.S.: The metric entropy of diffeomorphisms I. Characterization of measures satisfying Pesin’s entropy formula. Ann. Math. 122, 509–539 (1985)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Luzzatto, S., Melbourne, I.: Statistical properties and decay of correlations for interval maps with critical points and singularities. Commun. Math. Phys. 320(1), 21–35 (2013)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Luzzatto, S., Viana, M.: Positive Lyapunov exponents for Lorenz-like families with criticalities. Astérisque 261, 201–237 (2000). (Géométrie complexe et systèmes dynamiques (Orsay 1995))MathSciNetzbMATHGoogle Scholar
  46. 46.
    Mañé, R.: Ergodic Theory and Differentiable Dynamics. Springer, New York (1987)zbMATHGoogle Scholar
  47. 47.
    Melbourne, I.: Rapid decay of correlations for nonuniformly hyperbolic flows. Trans. Am. Math. Soc. 359(5), 2421–2441 (2007)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Melbourne, I., Nicol, M.: Almost sure invariance principle for nonuniformly hyperbolic systems. Comm. Math. Phys. 260(1), 131–146 (2005)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Metzger, R., Morales, C.: Sectional-hyperbolic systems. Ergod. Theory Dyn. Syst. 28, 1587–1597 (2008)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Mora, L., Viana, M.: Abundance of strange attractors. Acta Math. 171(1), 1–71 (1993)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Morales, C.A.: Examples of singular-hyperbolic attracting sets. Dyn. Syst. Int. J. 22(3), 339–349 (2007)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Morales, C.A., Pacifico, M.J., Pujals, E.R.: Singular hyperbolic systems. Proc. Am. Math. Soc. 127(11), 3393–3401 (1999)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Pacifico, M.J., Rovella, A., Viana, M.: Infinite-modal maps with global chaotic behavior. Ann. Math. (2) 148(2), 441–484 (1998). (Corrigendum in Annals of Math. 149, page 705, (1999))MathSciNetzbMATHGoogle Scholar
  54. 54.
    Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, Berlin (1982)zbMATHGoogle Scholar
  55. 55.
    Palmer, K.: Shadowing in Dynamical Systems: Theory and Applications, Volume 501 of Mathematics and Its Applications. Springer, Berlin (2010)Google Scholar
  56. 56.
    Pesin, Y., Sinai, Y.: Gibbs measures for partially hyperbolic attractors. Ergod. Theory Dyn. Syst. 2, 417–438 (1982)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Pesin, Y.B.: Lectures on Partial Hyperbolicity and Stable Ergodicity. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zurich (2004)zbMATHGoogle Scholar
  58. 58.
    Philipp, W., Stout, W.: Almost Sure Invariance Principles for Partial Sums of Weakly Dependent Random Variables. Memoirs of the American Mathematical Society. American Mathematical Society, Providence (1975)zbMATHGoogle Scholar
  59. 59.
    Ruelle, D.: A measure associated with Axiom A attractors. Am. J. Math. 98, 619–654 (1976)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat. 9, 83–87 (1978)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Ruelle, D.: The thermodynamical formalism for expanding maps. Commun. Math. Phys. 125, 239–262 (1989)zbMATHGoogle Scholar
  62. 62.
    Ruelle, D.: Thermodynamic Formalism. The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edn. Cambridge Mathematical Library, Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  63. 63.
    Sataev, E.A.: Some properties of singular hyperbolic attractors. Sbornik Math. 200(1), 35 (2009)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Sataev, E.A.: Invariant measures for singular hyperbolic attractors. Sbornik Math. 201(3), 419 (2010)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Shub, M.: Global Stability of Dynamical Systems. Springer, Berlin (1987)zbMATHGoogle Scholar
  66. 66.
    Sinai, Y.: Gibbs measures in ergodic theory. Russ. Math. Surv. 27, 21–69 (1972)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris 328(Série I), 1197–1202 (1999)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Viana, M.: What’s new on Lorenz strange attractor. Math. Intell. 22(3), 6–19 (2000)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Waddington, S.: Large deviations asymptotics for Anosov flows. Annales de l’Institut Henri Poincare, Section C 13(4), 445–484 (1996)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Young, L.S.: Some large deviation results for dynamical systems. Trans. Am. Math. Soc. 318(2), 525–543 (1990)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Young, L.S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585–650 (1998)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Matemática e EstatísticaUniversidade Federal da BahiaSalvadorBrazil
  2. 2.Centro Multidisciplinar de Bom Jesus da LapaUniversidade Federal do Oeste da BahiaBom Jesus da LapaBrazil
  3. 3.Campus Porto SeguroInstituto Federal da BahiaPorto SeguroBrazil

Personalised recommendations