Skip to main content
Log in

Rapid Mixing for the Lorenz Attractor and Statistical Limit Laws for Their Time-1 Maps

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that every geometric Lorenz attractor satisfying a strong dissipativity condition has superpolynomial decay of correlations with respect to the unique Sinai–Ruelle–Bowen measure. Moreover, we prove the central limit theorem and almost sure invariance principle for the time-1 map of the flow of such attractors. In particular, our results apply to the classical Lorenz attractor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afraĭmovič V.S., Bykov V.V., Sil’nikov L.P.: The origin and structure of the Lorenz attractor. Dokl. Akad. Nauk SSSR 234(2), 336–339 (1977)

    MathSciNet  ADS  Google Scholar 

  2. Alves J.F., Araújo V., Pacifico M.J., Pinheiro V.: On the volume of singular-hyperbolic sets. Dyn. Syst. Int. J. 22(3), 249–267 (2007)

    Article  MATH  Google Scholar 

  3. Alves J.F., Luzzatto S., Pinheiro V.: Lyapunov exponents and rates of mixing for one-dimensional maps. Ergod. Theory Dyn. Syst. 24(3), 637–657 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Araujo, V., Galatolo, S., Pacifico, M.J.: Decay of correlations of maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors. Math. Z. 276, 1001–1048 (2014)

  5. Araújo, V., Pacifico, M.J.: Three-dimensional flows. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 53. Springer, Berlin, Heidelberg (2010)

  6. Araújo V., Pujals E.R., Pacifico M.J., Viana M.: Singular-hyperbolic attractors are chaotic. Trans. Am. Math. Soc. 361, 2431–2485 (2009)

    Article  MATH  Google Scholar 

  7. Araujo V., Varandas P.: Robust exponential decay of correlations for singular-flows. Commun. Math. Phys. 311, 215–246 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Arbieto A.: Sectional Lyapunov exponents. Proc. Am. Math. Soc. 138, 3171–3178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Avila A., Gouëzel S., Yoccoz J.-C.: Exponential mixing for the Teichmüller flow. Publ. Math. Inst. Hautes Études Sci. 104, 143–211 (2006)

    Article  MATH  Google Scholar 

  10. Barreira, L., Pesin, Y.: Nonuniform hyperbolicity. Dynamics of systems with nonzero Lyapunov exponents. In: Encyclopedia of Mathematics and its Applications, vol. 115. Cambridge University Press, Cambridge (2007)

  11. Butterley, O., Melbourne, I.: Disintegration of invariant measures for hyperbolic skew products (2015). arXiv:1503.04319. (Preprint)

  12. Cornfeld, I.P., Fomin, S.V., Sinaĭ, Y.G.: Ergodic theory. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245. Springer, New York (1982)

  13. Cuny, C., Merlevède, F: Strong invariance principles with rate for “reverse” martingales and applications. J. Theor. Probab. 28(1),137–183 (2015)

  14. Dolgopyat D.: Prevalence of rapid mixing in hyperbolic flows. Ergod. Theory Dyn. Syst. 18(5), 1097–1114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gouezel S.: Regularity of coboundaries for non uniformly expanding Markov maps. Proc. AMS 134(2), 391–401 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guckenheimer J., Williams R.F.: Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 59–72 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hartman, P:. Ordinary differential equations. In: Classics in Applied Mathematics, vol. 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). [Corrected reprint of the second edition. Birkhäuser, Boston (1982)]

  18. Hirsch, M.W., Pugh, C.C.: Stable manifolds and hyperbolic sets. In: Global Analysis, Proc. Sympos. Pure Math., Berkeley, Calif., (1968), vol. XIV. Am. Math. Soc., Providence, pp. 133–163 (1970)

  19. Holland M., Melbourne I.: Central limit theorems and invariance principles for Lorenz attractors. J. Lond. Math. Soc. (2) 76(2), 345–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lorenz E.D.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  21. Luzzatto S., Melbourne I., Paccaut F.: The Lorenz attractor is mixing. Commun. Math. Phys. 260, 393–401 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Melbourne I.: Rapid decay of correlations for nonuniformly hyperbolic flows. Trans. Am. Math. Soc. 359, 2421–2441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Melbourne I.: Decay of correlations for slowly mixing flows. Proc. Lond. Math. Soc. (3) 98(1), 163–190 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Melbourne I., Török A.: Central limit theorems and invariance principles for time-one maps of hyperbolic flows. Commun. Math. Phys. 229(1), 57–71 (2002)

    Article  ADS  MATH  Google Scholar 

  25. Metzger R., Morales C.: Sectional-hyperbolic systems. Ergod. Theory Dyn. Syst. 28, 1587–1597 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Morales C.A., Pacifico M.J., Pujals E.R.: Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. Math. (2) 160(2), 375–432 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Philipp, W., Stout W.F.: Almost sure invariance principles for partial sums of weakly dependent random variables. In: Memoirs of the Am. Math. Soc., vol. 161. Am. Math. Soc., Providence (1975)

  28. Robinson C.: Homoclinic bifurcation to a transitive attractor of Lorenz type, II. SIAM J. Math. Anal. 23(5), 1255–1268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rychlik M.R.: Lorenz attractors through Šil’nikov-type bifurcation. I. Ergod. Theory Dyn. Syst. 10(4), 793–821 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Takens, F.: Limit capacity and Hausdorff dimension of dynamically defined Cantor sets. Dynamical systems, Valparaiso 1986. In: Lecture Notes in Math., vol. 1331, pp. 196–212, Springer, Berlin (1988)

  31. Tucker W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2(1), 53–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tyran-Kamińska M.: An invariance principle for maps with polynomial decay of correlations. Commun. Math. Phys. 260, 1–15 (2005)

    Article  ADS  MATH  Google Scholar 

  33. Viana M.: What’s new on Lorenz strange attractor. Math. Intell. 22(3), 6–19 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Walkden C.P.: Livšic theorems for hyperbolic flows. Trans. Am. Math. Soc. 352(3), 1299–1313 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Williams R.F.: The structure of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 73–99 (1979)

    Article  MATH  Google Scholar 

  36. Young L.S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585–650 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Araújo.

Additional information

Communicated by M. Lyubich

I.M. was partially supported by a Santander Staff Mobility Award at the University of Surrey, by a European Advanced Grant StochExtHomog (ERC AdG 320977) and by CNPq (Brazil) through PVE Grant No. 313759/2014-6. V.A. and P.V. were partially supported by CNPq, PRONEX-Dyn.Syst. and FAPESB (Brazil). This research has been supported in part by EU Marie-Curie IRSES Brazilian–European partnership in Dynamical Systems (FP7-PEOPLE-2012-IRSES 318999 BREUDS). We are grateful to Oliver Butterley for very helpful discussions regarding the regularity of the strong stable foliation and to the anonymous referees for pointing out several details in our argument that had to be addressed, greatly improving the final text of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, V., Melbourne, I. & Varandas, P. Rapid Mixing for the Lorenz Attractor and Statistical Limit Laws for Their Time-1 Maps. Commun. Math. Phys. 340, 901–938 (2015). https://doi.org/10.1007/s00220-015-2471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2471-0

Keywords

Navigation