Skip to main content
Log in

Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

An Erratum to this article was published on 28 December 2015

Abstract

We consider maps preserving a foliation which is uniformly contracting and a one-dimensional associated quotient map having exponential convergence to equilibrium (iterates of Lebesgue measure converge exponentially fast to physical measure). We prove that these maps have exponential decay of correlations over a large class of observables. We use this result to deduce exponential decay of correlations for suitable Poincaré maps of a large class of singular hyperbolic flows. From this we deduce a logarithm law for these flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We remark that to have the left hand of item (1) well defined we can assume (without changing \(\mu ^{1}\)) that \(\mu _{\gamma }^{2}\) is defined in some way, for example \(\mu _{\gamma }^{2}=m\) (the one dimensional Lebesgue measure on the leaf) for each leaf where the density of \(\mu _{x}^{2}\) is null.

References

  1. Abraham, R., Robbin, J.: Transversal Mappings and Flows. An Appendix by Al Kelley. W. A. Benjamin Inc., New York (1967)

  2. Afraimovich, V.S., Bykov, V.V., Shil’nikov, L.P.: On the appearence and structure of the Lorenz attractor. Dokl. Acad. Sci. USSR 234, 336–339 (1977)

    Google Scholar 

  3. Afraimovich, V.S., Chernov, N.I., Sataev, E.A.: Statistical properties of 2-D generalized hyperbolic attractors. Chaos 5(1), 238–252 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008)

  5. Anosov, D.V.: Geodesic flows on closed Riemannian manifolds of negative curvature. Proc. Steklov Math. Inst. 90, 1–235 (1967)

    MathSciNet  Google Scholar 

  6. Araújo, V., Pacifico, M. J.: Three-dimensional flows, volume 53 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg (2010). With a foreword by Marcelo Viana

  7. Araújo, V., Pujals, E.R., Pacifico, M.J., Viana, M.: Singular-hyperbolic attractors are chaotic. Trans. A.M.S. 361, 2431–2485 (2009)

    Article  MATH  Google Scholar 

  8. Araujo, V., Varandas, P.: Robust exponential decay of correlations for singular-flows. Commun. Math. Phys. 311, 215–246 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Athreya, J.S., Margulis, G.A.: Logarithm laws for unipotent flows. I. J. Mod. Dyn. 3(3), 359–378 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bonatti, C., Díaz, L.J., Viana, M.: Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, vol. 102 of Encyclopaedia of Mathematical Sciences. Mathematical Physics, III. Springer, Berlin (2005)

  11. Bonatti, C., Pumariño, A., Viana, M.: Lorenz attractors with arbitrary expanding dimension. C. R. Acad. Sci. Paris Sér. I Math. 325(8), 883–888 (1997)

    Article  MATH  Google Scholar 

  12. Brin, M., Pesin, Y.: Partially hyperbolic dynamical systems. Izv. Acad. Nauk. SSSR 1, 177–212 (1974)

    Google Scholar 

  13. Bunimovich, L. A.: Statistical properties of Lorenz attractors. In: Barenblatt, G.I. (ed.) Nonlinear Dynamics and Turbulence. Interaction of Mechanics and Mathematics Series, pp. 71–92. Pitman, Boston (1983)

  14. Galatolo, S.: Dimension and hitting time in rapidly mixing systems. Math. Res. Lett. 14(5), 797–805 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Galatolo, S.: Hitting time in regular sets and logarithm law for rapidly mixing dynamical systems. Proc. Am. Math. Soc. 138(7), 2477–2487 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Galatolo, S., Kim, D.H.: The dynamical Borel–Cantelli lemma and the waiting time problems. Indag. Math. (N.S.) 18(3), 421–434 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Galatolo, S., Nisoli, I.: Shrinking targets in fast mixing flows and the geodesic flow on negatively curved manifolds. Nonlinearity 24(11), 3099–3113 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Galatolo, S., Pacifico, M.J.: Lorenz like flows: exponential decay of correlations for the poincaré map, logarithm law, quantitative recurrence. Ergod. Theory Dyn. Syst. 30, 703–1737 (2010)

    Article  MathSciNet  Google Scholar 

  19. Galatolo, S., Peterlongo, P.: Long hitting time, slow decay of correlations and arithmetical properties. Discrete Continuous Dyn. Syst. 27(1), 185–204 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gorodnik, A., Shah, N.A.: Khinchins theorem for approximation by integral points on quadratic varieties. Math. Ann. 350(2), 357–380 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gourmelon, N.: Adapted metrics for dominated splittings. Ergod. Theory Dyn. Syst. 27(6), 1839–1849 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publ. Math. IHES 50, 59–72 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hartman, P.: Ordinary Differential Equations, vol. 38 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Corrected reprint of the 2nd (1982) edn. [Birkhäuser, Boston, MA; MR0658490 (83e:34002)], With a foreword by Peter Bates

  24. Hill, R., Velani, S.L.: The ergodic theory of shrinking targets. Invent. Math. 119(1), 175–198 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds, vol. 583 of Lecturer Notes in Mathematics. Springer Verlag, New York (1977)

  26. Holland, M., Melbourne, I.: Central limit theorems and invariance principles for Lorenz attractors. J. Lond. Math. Soc. (2) 76(2), 345–364 (2007)

    Google Scholar 

  27. Ionescu-Tulcea, C.T., Marinescu, G.: Théorie ergodique pour des classes d’operations non complètement continues. Ann. Math. 52, 140–147 (1950)

    Article  MathSciNet  Google Scholar 

  28. Keller, G.: Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrsch. Verw. Gebiete 69(3), 461–478 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kim, D.H., Marmi, S.: The recurrence time for interval exchange maps. Nonlinearity 21(9), 2201–2210 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kleinbock, D.Y., Margulis, G.A.: Logarithm laws for flows on homogeneous spaces. Invent. Math. 138(3), 451–494 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kontoyiannis, I.: Asymptotic recurrence and waiting times for stationary processes. J. Theor. Probab. 11(3), 795–811 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  33. Metzger, R., Morales, C.: Sectional-hyperbolic systems. Ergod. Theory Dyn. Syst. 28, 1587–1597 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Morales, C.A., Pacifico, M.J.: A dichotomy for three-dimensional vector fields. Ergod. Theory Dyn. Syst. 23(5), 1575–1600 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Morales, C.A., Pacifico, M.J., Pujals, E.R.: Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. Math. (2) 160(2), 375–432 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  37. Palis, J., Takens, F.: Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press, Cambridge, MA (1993)

    MATH  Google Scholar 

  38. Pesin, Y.: Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergod. Theory Dyn. Syst. 12, 123–151 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Pollicott, M.: On the rate of mixing of Axiom A flows. Invent. Math. 81(3), 413–426 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  40. Pugh, C., Shub, M.: Ergodicity of Anosov actions. Invent. Math. 15, 1–23 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pugh, C., Shub, M., Wilkinson, A.: Hölder foliations. Duke Math. J. 86, 517–546 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  42. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1999)

  43. Ruelle, D.: Flots qui ne mélangent pas exponentiellement. C. R. Acad. Sci. Paris Sér. I Math. 296(4), 191–193 (1983)

    MATH  MathSciNet  Google Scholar 

  44. Shields, P.C.: Waiting times: positive and negative results on the Wyner–Ziv problem. J. Theor. Probab. 6(3), 499–519 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  45. Shub, M.: Global Stability of Dynamical Systems. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  46. Steinberger, T.: Local dimension of ergodic measures for two-dimensional Lorenz transformations. Ergod. Theory Dyn. Syst. 20(3), 911–923 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. Sullivan, D.: Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics. Acta Math. 149(3–4), 215–237 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  48. Young, L.S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585–650 (1998)

    Google Scholar 

Download references

Acknowledgments

S.G. wishes to thank IMPA, PUC, and UFRJ (Rio de Janeiro), where a part of this work has been done, for their warm hospitality. All authors wish to thank Carlangelo Liverani for illuminating discussions about convergence to equilibrium and decay of correlations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José Pacifico.

Additional information

Vitor Araújo and Maria José Pacifico were partially supported by CNPq, PRONEX-Dyn.Syst., FAPERJ, Balzan Research Project of J. Palis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, V., Galatolo, S. & Pacifico, M.J. Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors. Math. Z. 276, 1001–1048 (2014). https://doi.org/10.1007/s00209-013-1231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1231-0

Keywords

Mathematics Subject Classification (2010)

Navigation