Advertisement

Polyetheretherketone (PEEK) for medical applications

  • Ivan Vladislavov PanayotovEmail author
  • Valérie Orti
  • Frédéric Cuisinier
  • Jacques Yachouh
Clinical Applications of Biomaterials Review Article
Part of the following topical collections:
  1. Clinical Applications of Biomaterials

Abstract

Polyetheretherketone (PEEK) is a polyaromatic semi-crystalline thermoplastic polymer with mechanical properties favorable for bio-medical applications. Polyetheretherketone forms: PEEK-LT1, PEEK-LT2, and PEEK-LT3 have already been applied in different surgical fields: spine surgery, orthopedic surgery, maxillo-facial surgery etc. Synthesis of PEEK composites broadens the physicochemical and mechanical properties of PEEK materials. To improve their osteoinductive and antimicrobial capabilities, different types of functionalization of PEEK surfaces and changes in PEEK structure were proposed. PEEK based materials are becoming an important group of biomaterials used for bone and cartilage replacement as well as in a large number of diverse medical fields. The current paper describes the structural changes and the surface functionalization of PEEK materials and their most common biomedical applications. The possibility to use these materials in 3D printing process could increase the scientific interest and their future development as well.

Keywords

Ultrahigh Molecular Weight Polyethylene Cervical Spondylotic Myelopathy Peek Cage Cervical Disc Disease Marginal Bone Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fan JP, Tsui CP, Tang CY, Chow CL. Influence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK biocomposite. Biomaterials. 2004;25:5363–73.CrossRefGoogle Scholar
  2. 2.
    Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–69.CrossRefGoogle Scholar
  3. 3.
    Green S. A polyaryletherketone biomaterial for use in medical implant applications. Chem Artic News. 2015;5:1–9.Google Scholar
  4. 4.
    Ferguson SJ, Visser JM, Polikeit A. The long-term mechanical integrity of non-reinforced PEEK-OPTIMA polymer for demanding spinal applications: experimental and finite-element analysis. Eur Spine J. 2006;15:149–56.CrossRefGoogle Scholar
  5. 5.
    Bradley JSH, Hastings GW, Johnson-Nurse C. Carbon fibre reinforced epoxy as a high strength, low modulus material for internal fixation plates. Biomaterials. 1980;1:38–40.CrossRefGoogle Scholar
  6. 6.
    Ha SW, Kirch M, Birchler F, Eckert KL, Mayer J, Wintermantel E, et al. Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation. J Mater Sci Mater Med. 1997;8:683–90.CrossRefGoogle Scholar
  7. 7.
    Kizuki T, Matsushita T, Kokubo T. Apatite-forming PEEK with TiO2 surface layer coating. J Mater Sci Mater Med. 2015;26:5359.CrossRefGoogle Scholar
  8. 8.
    Lin TW, Corvelli AA, Frondoza CG, Roberts JC, Hungerford DS. Glass peek composite promotes proliferation and osteocalcin production of human osteoblastic cells. J Biomed Mater Res. 1997;36:137–44.CrossRefGoogle Scholar
  9. 9.
    Sasuga TH, Hagiwara M. Radiation deterioration of several aromatic polymers under oxidative conditions. Polymer. 1987;28:1915–21.CrossRefGoogle Scholar
  10. 10.
    Li HM, Fouracre RA, Given MJ, Banford HM, Wysocki S, Karolczak S. Effects on polyetheretherketone and polyethersulfone of electron and gamma irradiation. Dielectr Electr Insul. 1999;6:295–303.CrossRefGoogle Scholar
  11. 11.
    Sobieraj MC, Kurtz SM, Rimnac CM. Notch sensitivity of PEEK in monotonic tension. Biomaterials. 2009;30:6485–94.CrossRefGoogle Scholar
  12. 12.
    Scolozzi P, Martinez A, Jaques B. Complex orbito-fronto-temporal reconstruction using computer-designed PEEK implant. J Craniofac Surg. 2007;18:224–8.CrossRefGoogle Scholar
  13. 13.
    Ranaud M, Farkasdi S, Pons C, Panayotov I, Collart-Dutilleur P-Y, Taillades H, et al. A new rat model for translational research in bone regeneration. Tissue Eng C. 2015. doi: 10.1089/ten.tec.2015.0187.Google Scholar
  14. 14.
    Jockisch KA, Brown SA, Bauer TW, Merritt K. Biological response to chopped-carbon-fiber-reinforced peek. J Biomed Mater Res. 1992;26:133–46.CrossRefGoogle Scholar
  15. 15.
    Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials. 2008;29:1563–72.CrossRefGoogle Scholar
  16. 16.
    Abu Bakar MS, Cheang P, Khor KA. Mechanical properties of injection molded hydroxyapatite–polyetheretherketone biocomposites. Compos Sci Technol. 2003;63:421–5.CrossRefGoogle Scholar
  17. 17.
    Abu Bakar MS, Cheng MH, Tang SM, Yu SC, Liao K, Tan CT, et al. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials. 2003;24:2245–50.CrossRefGoogle Scholar
  18. 18.
    Petrovic L, Pohle D, Munstedt H, Rechtenwald T, Schlegel KA, Rupprecht S. Effect of betaTCP filled polyetheretherketone on osteoblast cell proliferation in vitro. J Biomed Sci. 2006;13:41–6.CrossRefGoogle Scholar
  19. 19.
    Kim IY, Sugino A, Kikuta K, Ohtsuki C, Cho SB. Bioactive composites consisting of PEEK and calcium silicate powders. J Biomater Appl. 2009;24:105–18.CrossRefGoogle Scholar
  20. 20.
    Wong KLWC, Liu WC, Pan HB, Fong MK, Lam WM, Cheung WL, Tang WM, Chiu KY, Luk KD, Lu WW. Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites. Biomaterials. 2009;30:3810–7.CrossRefGoogle Scholar
  21. 21.
    Kuo MC, Tsai CM, Huang JC, Chen M. PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater Chem Phys. 2005;90:185–95.CrossRefGoogle Scholar
  22. 22.
    Wu X, Liu X, Wei J, Ma J, Deng F, Wei S. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies. Int J Nanomed. 2012;7:1215–25.Google Scholar
  23. 23.
    Wang DH, Tanc JB, Tan LS. Grafting of vapor-grown carbon nanofibers (VGCNF) with a hyperbranched poly(ether-ketone). Mater Sci Eng B. 2006;132:103–7.CrossRefGoogle Scholar
  24. 24.
    Morrison CMR, MacDonald C, Wykman A, Goldie I, Grant MH. In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. Biomaterials. 1995;16:987–92.CrossRefGoogle Scholar
  25. 25.
    Hunter A, Archer CW, Walker PS, Blunn GW. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. Biomaterials. 1995;16:287–95.CrossRefGoogle Scholar
  26. 26.
    Dennes TJ, Schwartz J. A nanoscale adhesion layer to promote cell attachment on PEEK. J Am Chem Soc. 2009;131:3456–7.CrossRefGoogle Scholar
  27. 27.
    Han CM, Lee EJ, Kim HE, Koh YH, Kim KN, Ha Y, et al. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials. 2010;31:3465–70.CrossRefGoogle Scholar
  28. 28.
    Briem D, Strametz S, Schroder K, Meenen NM, Lehmann W, Linhart W, et al. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J Mater Sci Mater Med. 2005;16:671–7.CrossRefGoogle Scholar
  29. 29.
    Scotchford CA, Garle MJ, Batchelor J, Bradley J, Grant DM. Use of a novel carbon fibre composite material for the femoral stem component of a THR system: in vitro biological assessment. Biomaterials. 2003;24:4871–9.CrossRefGoogle Scholar
  30. 30.
    Wang L, He S, Wu X, Liang S, Mu Z, Wei J, et al. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials. 2014;35:6758–75.CrossRefGoogle Scholar
  31. 31.
    Kelly CP, Cohen AJ, Yavuzer R, Jackson IT. Cranial bone grafting for orbital reconstruction: is it still the best? J Craniofac Surg. 2005;16:181–5.CrossRefGoogle Scholar
  32. 32.
    Hanasono MM, Goel N, DeMonte F. Calvarial reconstruction wth polyetheretherketone implants. Ann Plastic Surg. 2009;62:653–5.CrossRefGoogle Scholar
  33. 33.
    Kim MM, Boahene KD, Byrne PJ. Use of customized polyetheretherketone (PEEK) implants in the reconstruction of complex maxillofacial defects. Arch Fac Plast Surg. 2009;11:53–7.Google Scholar
  34. 34.
    Goodsonb ML, Farr D, Keith D, Banks RJ. Use of two-piece polyetheretherketone (PEEK) implants in orbitozygomatic reconstruction. Br J Oral Maxillofac Surg. 2012;50:268–9.CrossRefGoogle Scholar
  35. 35.
    Jalbert F, Boetto S, Nadon F, Lauwers F, Schmidt E, Lopez R. One-step primary reconstruction for complex craniofacial resection with PEEK custom-made implants. J Cranio Maxillo Fac surg. 2014;42:141–8.CrossRefGoogle Scholar
  36. 36.
    Lethaus B, Safi Y, ter Laak-Poort M, Kloss-Brandstatter A, Banki F, Robbenmenke C, et al. Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. J Neurotrauma. 2012;29:1077–83.CrossRefGoogle Scholar
  37. 37.
    O’Reilly EB, Barnett S, Madden C, Welch B, Mickey B, Rozen S. Computed-tomography modeled polyether ether ketone (PEEK) implants in revision cranioplasty. J Plast Reconstr Aesthet Surg. 2015;68:329–38.CrossRefGoogle Scholar
  38. 38.
    Thien A, King NK, Ang BT, Wang E, Ng I. Comparison of polyetheretherketone and titanium cranioplasty after decompressive craniectomy. World Neurosurg. 2015;83:176–80.CrossRefGoogle Scholar
  39. 39.
    Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ, Kwon HB. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B. 2012;100:1044–52.CrossRefGoogle Scholar
  40. 40.
    Sarot JR, Contar CM, Cruz AC, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med. 2010;21:2079–85.CrossRefGoogle Scholar
  41. 41.
    Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Muller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech. 2015;48:1–7.CrossRefGoogle Scholar
  42. 42.
    Cook SD, Rust-Dawicki AM. Preliminary evaluation of titanium-coated PEEK dental implants. J oral Implantol. 1995;21:176–81.Google Scholar
  43. 43.
    Schwitalla A, Muller WD. PEEK dental implants: a review of the literature. J Oral implantol. 2013;39:743–9.CrossRefGoogle Scholar
  44. 44.
    Stawarczyk B, Thrun H, Eichberger M, Roos M, Edelhoff D, Schweiger J, et al. Effect of different surface pretreatments and adhesives on the load-bearing capacity of veneered 3-unit PEEK FDPs. J Prosthet Dent. 2015;114:666–73.CrossRefGoogle Scholar
  45. 45.
    Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK Optima—a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–8.CrossRefGoogle Scholar
  46. 46.
    Brockett CL, John G, Williams S, Jin Z, Isaac GH, Fisher J. Wear of ceramic-on-carbon fiber-reinforced poly-ether ether ketone hip replacements. J Biomed Mater Res B. 2012;100:1459–65.CrossRefGoogle Scholar
  47. 47.
    Scholes SC, Unsworth A. Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials. J Mater Sci Mater Med. 2009;20:163–70.CrossRefGoogle Scholar
  48. 48.
    Li CS, Vannabouathong C, Sprague S, Bhandari M. The use of carbon-fiber-reinforced (CFR) PEEK Material in orthopedic implants: a systematic review. Clin Med Insights Arthr Musculoskelet Disord. 2015;8:33–45.CrossRefGoogle Scholar
  49. 49.
    Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60:12–9.CrossRefGoogle Scholar
  50. 50.
    Steinbergn EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK optima—a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–8.CrossRefGoogle Scholar
  51. 51.
    Nakahara I, Takao M, Bandoh S, Bertollo N, Walsh WR, Sugano N. In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model. J Orthop Res. 2013;31:485–92.CrossRefGoogle Scholar
  52. 52.
    Grapow MT, Melly LF, Eckstein FS, Reuthebuch OT. A new cable-tie based sternal closure system: description of the device, technique of implantation and first clinical evaluation. J Cardiothorac Surg. 2012;7:59.CrossRefGoogle Scholar
  53. 53.
    Sahoo PK. Polyetheretherketone (PEEK) cages for cervical interbody replacement. Apollo Med. 2013;10:233–6.CrossRefGoogle Scholar
  54. 54.
    Ponnappan RK, Serhan H, Zarda B, Patel R, Albert T, Vaccaro AR. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J. 2009;9:263–7.CrossRefGoogle Scholar
  55. 55.
    Ha SK, Park JY, Kim SH, Lim DJ, Kim SD, Lee SK. Radiologic Assessment of Subsidence in Stand-Alone Cervical Polyetheretherketone (PEEK) Cage. J Korean Neurosurg Soc. 2008;44:370–4.CrossRefGoogle Scholar
  56. 56.
    Cho DY, Liau WR, Lee WY, Liu JT, Chiu CL, Sheu PC. Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery. 2002;51:1343–9.Google Scholar
  57. 57.
    Hee HT, Kundnani V. Rationale for use of polyetheretherketone polymer interbody cage device in cervical spine surgery. Spine J. 2010;10:66–9.CrossRefGoogle Scholar
  58. 58.
    Klimo P Jr, Peelle MW. Use of polyetheretherketone spacer and recombinant human bone morphogenetic protein-2 in the cervical spine: a radiographic analysis. Spine J. 2009;9:959–66.CrossRefGoogle Scholar
  59. 59.
    Faldini C, Chehrassan M, Miscione MT, Acri F, d’Amato M, Pungetti C, et al. Single-level anterior cervical discectomy and interbody fusion using PEEK anatomical cervical cage and allograft bone. J Orthop Traumatol. 2011;12:201–5.CrossRefGoogle Scholar
  60. 60.
    Arts MP, Wolfs JF, Corbin TP. The CASCADE trial: effectiveness of ceramic versus PEEK cages for anterior cervical discectomy with interbody fusion; protocol of a blinded randomized controlled trial. BMC Musculoskelet Disord. 2013;14:244.CrossRefGoogle Scholar
  61. 61.
    Yang JJ, Yu CH, Chang BS, Yeom JS, Lee JH, Lee CK. Subsidence and nonunion after anterior cervical interbody fusion using a stand-alone polyetheretherketone (PEEK) cage. Clin Orthop Surg. 2011;3:16–23.CrossRefGoogle Scholar
  62. 62.
    Song KJ, Kim GH, Choi BY. Efficacy of PEEK cages and plate augmentation in three-level anterior cervical fusion of elderly patients. Clin Orthop Surg. 2011;3:9–15.CrossRefGoogle Scholar
  63. 63.
    Walter J, Kuhn SA, Reichart R, Kalff R, Ewald C. PEEK cages as a potential alternative in the treatment of cervical spondylodiscitis: a preliminary report on a patient series. Eur Spine J. 2010;19:1004–9.CrossRefGoogle Scholar
  64. 64.
    Topuz K, Colak A, Kaya S, Simsek H, Kutlay M, Demircan MN, et al. Two-level contiguous cervical disc disease treated with peek cages packed with demineralized bone matrix: results of 3-year follow-up. Eur Spine J. 2009;18:238–43.CrossRefGoogle Scholar
  65. 65.
    Kulkarni AG, Hee HT, Wong HK. Solis cage (PEEK) for anterior cervical fusion: preliminary radiological results with emphasis on fusion and subsidence. Spine J. 2007;7:205–9.CrossRefGoogle Scholar
  66. 66.
    Kasliwal MK, O’Toole JE. Clinical experience using polyetheretherketone (PEEK) intervertebral structural cage for anterior cervical corpectomy and fusion. J Clin Neurosci. 2014;21:217–20.CrossRefGoogle Scholar
  67. 67.
    Kersten RF, van Gaalen SM, de Gast A, Oner FC. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J. 2013;15(6):1446–60.CrossRefGoogle Scholar
  68. 68.
    Chou YC, Chen DC, Hsieh WA, Chen WF, Yen PS, Harnod T, et al. Efficacy of anterior cervical fusion: comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. J Clin Neurosci. 2008;15:1240–5.CrossRefGoogle Scholar
  69. 69.
    Matge G. Cervical cage fusion with 5 different implants: 250 cases. Acta Neurochir. 2002;144:539–49 discussion 50.CrossRefGoogle Scholar
  70. 70.
    Meier U, Kemmesies D. Experiences with six different intervertebral disc spacers for spondylodesis of the cervical spine. Der Orthop. 2004;33:1290–9.CrossRefGoogle Scholar
  71. 71.
    Niu CC, Liao JC, Chen WJ, Chen LH. Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages. J Spin Disord Tech. 2010;23:310–6.CrossRefGoogle Scholar
  72. 72.
    Cabraja M, Oezdemir S, Koeppen D, Kroppenstedt S. Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord. 2012;13:172.CrossRefGoogle Scholar
  73. 73.
    Chen Y, Wang X, Lu X, Yang L, Yang H, Yuan W, et al. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J. 2013;22:1539–46.CrossRefGoogle Scholar
  74. 74.
    Zhou J, Xia Q, Dong J, Li X, Zhou X, Fang T, et al. Comparison of stand-alone polyetheretherketone cages and iliac crest autografts for the treatment of cervical degenerative disc diseases. Acta Neurochir (Wien). 2011;153:115–22.CrossRefGoogle Scholar
  75. 75.
    Bezuidenhout D, Williams DF, Zilla P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials. 2015;36:6–25.CrossRefGoogle Scholar
  76. 76.
    Leat ME, Fisher J. A synthetic leaflet heart valve with improved opening characteristics. Med Eng Phys. 1994;16:470–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ivan Vladislavov Panayotov
    • 1
    Email author
  • Valérie Orti
    • 1
  • Frédéric Cuisinier
    • 1
  • Jacques Yachouh
    • 1
  1. 1.Laboratoire de Bioingénierie et Nanosciences EA 4203, UFR OdontologieUniversité de MontpellierMontpellier Cedex 5France

Personalised recommendations