Skip to main content

Advertisement

Log in

The long-term mechanical integrity of non-reinforced PEEK-OPTIMA polymer for demanding spinal applications: experimental and finite-element analysis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37°C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. PEEK-OPTIMA is a specific medical grade of PEEK, supplied for use in human implantable devices.

References

  1. Abu Bakar MS, Cheng MH, Tang SM, Yu SC, Liao K, Tan CT, Khor KA, Cheang P (2003) Tensile properties, tension–tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 24:2245–2250

    Article  CAS  PubMed  Google Scholar 

  2. Akay M, Aslan N (1995) An estimation of fatigue life for a carbon fibre/poly ether ether ketone hip joint prosthesis. Proc Inst Mech Eng [H] 209:93–103

    Article  CAS  Google Scholar 

  3. Akay M, Aslan N (1996) Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis. J Biomed Mater Res 31:167–182

    Article  CAS  PubMed  Google Scholar 

  4. Albert K, Schledjewski R, Harbaugh M, Bleser S, Jamison R, Friedrich K (1994) Characterization of wear in composite material orthopaedic implants. Part II: The implant/bone interface. Biomed Mater Eng 4:199–211

    CAS  PubMed  Google Scholar 

  5. ASTM D2990–01 (2004) Standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics

  6. ASTM D695–02 (2004) Standard test method for compressive properties of rigid plastics

  7. Baidya KP, Ramakrishna S, Rahman M, Ritchie A (2001) Quantitative radiographic analysis of fiber reinforced polymer composites. J Biomater Appl 15:279–289

    Article  CAS  PubMed  Google Scholar 

  8. Brown SA, Hastings RS, Mason JJ, Moet A (1990) Characterization of short-fibre reinforced thermoplastics for fracture fixation devices. Biomaterials 11:541–547

    Article  CAS  PubMed  Google Scholar 

  9. Chabrier F, Lloyd CH, Scrimgeour SN (1999) Measurement at low strain rates of the elastic properties of dental polymeric materials. Dent Mater 15:33–38

    Article  CAS  PubMed  Google Scholar 

  10. Cho DY, Liau WR, Lee WY, Liu JT, Chiu CL, Sheu PC (2002) Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery 51:1343–1349

    Article  PubMed  Google Scholar 

  11. Cook SD, Rust-Dawicki AM (1995) Preliminary evaluation of titanium-coated PEEK dental implants. J Oral Implantol 21:176–181

    CAS  PubMed  Google Scholar 

  12. Cripton PA (1993) Compressive characterization of ultra high molecular weight polyethylene with applications to contact stress analysis of total knee replacments. MSc Thesis, Queen’s University

  13. Diedrich O, Kraft CN, Perlick L, Schmitt O (2001) The posterior lumbar interbody fusion with cages (PLIF) and transpedicular stabilization. Zentralbl Neurochir 62:106–113

    CAS  PubMed  Google Scholar 

  14. Frei H, Oxland TR, Rathonyi GC, Nolte LP (2001) The effect of nucleotomy on lumbar spine mechanics in compression and shear loading. Spine 26:2080–2089

    Article  CAS  PubMed  Google Scholar 

  15. Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896

    Article  CAS  PubMed  Google Scholar 

  16. Hunter A, Archer CW, Walker PS, Blunn GW (1995) Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. Biomaterials 16:287–295

    Article  CAS  PubMed  Google Scholar 

  17. Jockisch KA, Brown SA, Bauer TW, Merritt K (1992) Biological response to chopped-carbon-fiber-reinforced peek. J Biomed Mater Res 26:133–146

    Article  CAS  PubMed  Google Scholar 

  18. Katoozian H, Davy DT, Arshi A, Saadati U (2001) Material optimization of femoral component of total hip prosthesis using fiber reinforced polymeric composites. Med Eng Phys 23:503–509

    Article  CAS  PubMed  Google Scholar 

  19. Katzer A, Marquardt H, Westendorf J, Wening JV, von FG (2002) Polyetheretherketone–cytotoxicity and mutagenicity in vitro. Biomaterials 23:1749–1759

    Article  CAS  PubMed  Google Scholar 

  20. Krammer M, Dietl R, Lumenta CB, Kettler A, Wilke HJ, Buttner A, Claes L (2001) Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages. Acta Neurochir (Wien) 143:1217–1222

    Article  CAS  PubMed  Google Scholar 

  21. Kurtz SM, Villarraga ML, Herr MP, Bergstrom JS, Rimnac CM, Edidin AA (2002) Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials 23:3681–3697

    Article  CAS  PubMed  Google Scholar 

  22. Lee KY, Pienkowski D (1998) Compressive creep characteristics of extruded ultrahigh-molecular-weight polyethylene. J Biomed Mater Res 39:261–265

    Article  CAS  PubMed  Google Scholar 

  23. Maharaj G, Bleser S, Albert K, Lambert R, Jani S, Jamison R (1994) Characterization of wear in composite material orthopaedic implants. Part I: the composite trunnion/ceramic head interface. Biomed Mater Eng 4:193–198

    CAS  PubMed  Google Scholar 

  24. Matge G (2002) Cervical cage fusion with 5 different implants: 250 cases. Acta Neurochir (Wien) 144:539–549

    Article  CAS  PubMed  Google Scholar 

  25. Meyer MR, Friedman RJ, Del SH Jr, Latour RA Jr (1994) Long-term durability of the interface in FRP composites after exposure to simulated physiologic saline environments. J Biomed Mater Res 28:1221–1231

    Article  CAS  PubMed  Google Scholar 

  26. Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569–577

    Article  CAS  PubMed  Google Scholar 

  27. Morrison C, Macnair R, MacDonald C, Wykman A, Goldie I, Grant MH (1995) In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. Biomaterials 16:987–992

    Article  CAS  PubMed  Google Scholar 

  28. Oxland TR, Lund T (2000) Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J 9(Suppl 1):S95–S101

    Article  PubMed  Google Scholar 

  29. Polikeit A (2002) Finite element analysis of the lumbar spine: clinical applications. PhD Thesis, University of Bern

    Google Scholar 

  30. Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 12:413–420

    Article  PubMed  Google Scholar 

  31. Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) The importance of the endplate for interbody cages in the lumbar spine. Eur Spine J 12:556–561

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rivard CH, Rhalmi S, Coillard C (2002) In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits. J Biomed Mater Res 62:488–498

    Article  CAS  PubMed  Google Scholar 

  33. Schulte M, Schultheiss M, Hartwig E, Wilke HJ, Wolf S, Sokiranski R, Fleiter T, Kinzl L, Claes L (2000) Vertebral body replacement with a bioglass-polyurethane composite in spine metastases—clinical, radiological and biomechanical results. Eur Spine J 9:437–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soyer J (1997) Experimental protocol for mechanical characterization of a femoral implant of carbon-Peek composite hip prosthesis in fatigue. Chirurgie 121:658–662

    CAS  PubMed  Google Scholar 

  35. Steffen T, Tsantrizos A, Aebi M (2000) Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine 25:1077–1084

    Article  CAS  PubMed  Google Scholar 

  36. http://www.victrex.com/uk/pdfclickthru.asp?pdf=VicPropertiesUK.pdf

  37. Wenz LM, Merritt K, Brown SA, Moet A, Steffee AD (1990) In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res 24:207–215

    Article  CAS  PubMed  Google Scholar 

  38. Wilke HJ, Kettler A, Claes L (2002) Stabilizing effect and sintering tendency of 3 different cages and bone cement for fusion of cervical vertebrae segments. Orthopade 31:472–480

    Article  CAS  PubMed  Google Scholar 

  39. Zhang G, Latour RA Jr, Kennedy JM, Del SH Jr, Friedman RJ (1996) Long-term compressive property durability of carbon fibre-reinforced polyetheretherketone composite in physiological saline. Biomaterials 17:781–789

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PEEK-OPTIMA material provided by Invibio, Lancashire, UK. Financial support provided by Mathys Medical Ltd., Bettlach, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Ferguson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, S.J., Visser, J.M.A. & Polikeit, A. The long-term mechanical integrity of non-reinforced PEEK-OPTIMA polymer for demanding spinal applications: experimental and finite-element analysis. Eur Spine J 15, 149–156 (2006). https://doi.org/10.1007/s00586-005-0915-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-005-0915-5

Keywords

Navigation