Skip to main content

Advertisement

Log in

Hierarchical three-dimensional NiMoO4-anchored rGO/Ni foam as advanced electrode material with improved supercapacitor performance

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Designing a novel, efficient and cost-effective nanocomposite with the advantage of robust structure and outstanding conductivity is highly promising for the electrode materials of high-performance supercapacitors. Herein, we designed and synthesized a hierarchical structured NiMoO4@rGO/NF via a facile and scalable approach by growing NiMoO4 nanowires onto the skeleton of reduced graphene oxide (rGO)/Ni foam (NF). The as-made NiMoO4@rGO/NF exhibits a superior electrochemical behavior owing to the coupling effect of homogeneous NiMoO4 nanowires and high conductivity of rGO, and it exhibits a superb capacitance value of 1877 F g−1 at 1 A g−1 and shows a ultralong life span with over 98% capacitance retention after 4000 cycles at 5 A g−1 in 2 M KOH electrolyte. Moreover, an asymmetric device employing NiMoO4@rGO/NF composite and activated carbon is assembled with an aqueous electrolyte, and it displays a maximum energy density of 40 Wh kg−1 at a specific power 218.2 W kg−1. Interestingly, the asymmetric device can remain 111.2% of its initial value even after 8000 charge/discharge cycles. These results demonstrate that the NiMoO4@rGO/NF binder-free electrode provides greatly enhanced electrochemical performance and shows promising application as an anode for energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang JG, Jin D, Zhou R, Shen C, Xie K, Wei B (2016) One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J Power Sources 306:100–106

    Article  Google Scholar 

  2. Song H, Fu J, Ding K et al (2016) Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. J Power Sources 328:599–606

    Article  Google Scholar 

  3. Lv Z, Zhong Q, Bu Y (2016) Controllable synthesis of Ni–Co nanosheets covered hollow box via altering the concentration of nitrate for high performance supercapacitor. Electrochim Acta 215:500–505

    Article  Google Scholar 

  4. Liu S, Zhao Q, Tong M et al (2016) Ultrafine nickel–cobalt alloy nanoparticles incorporated into three-dimensional porous graphitic carbon as an electrode material for supercapacitors. J Mater Chem A 4:17080–17086

    Article  Google Scholar 

  5. Zou R, Yuen MF, Yu L, Hu J, Lee CS, Zhang W (2016) Electrochemical energy storage application and degradation analysis of carbon-coated hierarchical NiCo2S4 core-shell nanowire arrays grown directly on graphene/nickel foam. Sci Rep 6:20264

    Article  Google Scholar 

  6. Zheng Y, Lin Z, Chen W et al (2017) Flexible, sandwich-like CNTs/NiCo2O4 hybrid paper electrodes for all-solid state supercapacitors. J Mater Chem A 5:5886–5894

    Article  Google Scholar 

  7. Balasubramanian S, Kamatchi Kamaraj P (2015) Fabrication of natural polymer assisted mesoporous Co3O4/carbon composites for supercapacitors. Electrochim Acta 168:50–58

    Article  Google Scholar 

  8. Zhu L, Nuo Peh CK, Zhu T, Lim YF, Ho GW (2017) Bifunctional 2D-on-2D MoO3 nanobelt/Ni(OH)2 nanosheets for supercapacitor-driven electrochromic energy storage. J Mater Chem A 5:8343–8351

    Article  Google Scholar 

  9. Eskusson J, Rauwel P, Nerut J, Jänes A (2016) A hybrid capacitor based on Fe3O4-graphene nanocomposite/few-layer graphene in different aqueous electrolytes. J Electrochem Soc 163:A2768–A2775

    Article  Google Scholar 

  10. Cheng J, Zhao B, Zhang W, Shi F, Zheng G, Zhang D, Yang J (2015) High-performance supercapacitor applications of NiO-nanoparticle-decorated millimeter-long vertically aligned carbon nanotube arrays via an effective supercritical CO2-assisted method. Adv Funct Mater 25:7381–7391

    Article  Google Scholar 

  11. Jiang C, Zhao B, Cheng J, Li J, Zhang H, Tang Z, Yang J (2015) Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochim Acta 173:399–407

    Article  Google Scholar 

  12. Zhang Y, Xuan H, Xu Y et al (2016) One-step large scale combustion synthesis mesoporous MnO2/MnCo2O4 composite as electrode material for high-performance supercapacitors. Electrochim Acta 206:278–290

    Article  Google Scholar 

  13. Guo D, Luo Y, Yu X, Li Q, Wang T (2014) High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8:174–182

    Article  Google Scholar 

  14. Gao Z, Yang W, Wang J, Song N, Li X (2015) Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317

    Article  Google Scholar 

  15. Chen Y, Liu B, Liu Q, Wang J, Li Z, Jing X, Liu L (2015) Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors. Nanoscale 7:15159–15167

    Article  Google Scholar 

  16. Cai D, Wang D, Liu B et al (2013) Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl Mater Interfaces 5:12905–12910

    Article  Google Scholar 

  17. Yao M, Hu Z, Liu Y, Liu P (2016) A novel synthesis of size-controllable mesoporous NiMoO4 nanospheres for supercapacitor applications. Ionics 22:701–709

    Article  Google Scholar 

  18. Budhiraju VS, Kumar R, Sharma A, Sivakumar S (2017) Structurally stable hollow mesoporous graphitized carbon nanofibers embedded with NiMoO4 nanoparticles for high performance asymmetric supercapacitors. Electrochim Acta 238:337–348

    Article  Google Scholar 

  19. Zhou D, Cheng P, Luo J, Xu W, Li J, Yuan D (2017) Facile synthesis of graphene@NiMoO4 nanosheet arrays on Ni foam for a high-performance asymmetric supercapacitor. J Mater Sci 52:13909–13919. https://doi.org/10.1007/s10853-017-1467-x

    Article  Google Scholar 

  20. Yin Z, Zhang S, Chen Y, Gao P, Zhu C, Yang P, Qi L (2015) Hierarchical nanosheet-based NiMoO4 nanotubes: synthesis and high supercapacitor performance. J Mater Chem A 3:739–745

    Article  Google Scholar 

  21. Liu MC, Kang L, Kong LB, Lu C, Ma XJ, Li XM, Luo YC (2013) Facile synthesis of NiMoO4·xH2O nanorods as a positive electrode material for supercapacitors. RSC Adv 3:6472–6478

    Article  Google Scholar 

  22. Liu T, Chai H, Jia D, Su Y, Wang T, Zhou W (2015) Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochim Acta 180:998–1006

    Article  Google Scholar 

  23. Yuan C, Yang L, Hou L et al (2012) Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv Funct Mater 22:2560–2566

    Article  Google Scholar 

  24. Hong J, Lee YW, Hou B et al (2016) Solubility-dependent NiMoO4 nanoarchitectures: direct correlation between rationally designed structure and electrochemical pseudokinetics. ACS Appl Mater Interfaces 8:35227–35234

    Article  Google Scholar 

  25. Cheng D, Yang Y, Luo Y, Fang C, Xiong J (2015) Growth of ultrathin mesoporous Ni–Mo oxide nanosheet arrays on Ni foam for high–performance supercapacitor electrodes. Electrochim Acta 176:1343–1351

    Article  Google Scholar 

  26. Zhang C, Kuila T, Kim NH, Lee SH, Lee JH (2015) Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon 89:328–339

    Article  Google Scholar 

  27. Zeng W, Zhang G, Hou S, Wang T, Duan H (2015) Facile synthesis of graphene@NiO/MoO3 composite nanosheet arrays for high-performance supercapacitors. Electrochim Acta 151:510–516

    Article  Google Scholar 

  28. Li Y, Jian J, Fan Y et al (2016) Facile one-pot synthesis of a NiMoO4/reduced graphene oxide composite as a pseudocapacitor with superior performance. RSC Adv 6:69627–69633

    Article  Google Scholar 

  29. Ghosh D, Giri S, Das CK (2013) Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4·nH2O nanorods. Nanoscale 5:10428–10437

    Article  Google Scholar 

  30. Li Z, Zhang W, Sun C, Feng Z, Yang B (2016) Controlled synthesis of Ni(OH)2/graphene composites and their transformation to NiO/graphene for energy storage. Electrochim Acta 212:390–398

    Article  Google Scholar 

  31. Paredes JI, Villar RS, Solis FP, Martinez AA, Tascon JM (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25:5957–5968

    Article  Google Scholar 

  32. Wang W, Tang B, Ju B, Gao Z, Xiu J, Zhang S (2017) Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic- and sunlight-driven energy conversion and storage. J Mater Chem A 5:958–968

    Article  Google Scholar 

  33. Li W, Zhang LS, Wang Q, Yu Y, Chen Z, Cao CY, Song WG (2012) Low-cost synthesis of graphitic carbon nanofibers as excellent room temperature sensors for explosive gases. J Mater Chem 22:15342–15347

    Article  Google Scholar 

  34. Liu YZ, Li YF, Yang YG, Wen YF, Wang MZ (2013) A one-pot method for producing ZnO-graphene nanocomposites from graphene oxide for supercapacitors. Scr Mater 68:301–304

    Article  Google Scholar 

  35. Jia D, Yu X, Tan H, Li X, Han F, Li L, Liu H (2017) Hierarchical porous carbon with ordered straight micro-channels templated by continuous filament glass fiber arrays for high performance supercapacitors. J Mater Chem A 5:1516–1525

    Article  Google Scholar 

  36. Shaheen W, Warsi MF, Shahid M et al (2016) Carbon coated MoO3 nanowires/graphene oxide ternary nanocomposite for high-performance supercapacitors. Electrochim Acta 219:330–338

    Article  Google Scholar 

  37. Li T, Zuo Y, Lei X, Li N, Liu J, Han H (2016) Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni3S2 nanorod/nanowire arrays for high-performance supercapacitors. J Mater Chem A 4:8029–8040

    Article  Google Scholar 

  38. Hou L, Shi Y, Zhu S, Rehan M, Pang G, Zhang X, Yuan C (2017) Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles: unusual formation and excellent pseudocapacitance towards hybrid supercapacitors. J Mater Chem A 5:133–144

    Article  Google Scholar 

  39. Jiang L, Shanmuganathan S, Nelson GW, Han SO, Kim H, Na Sim I, Foord JS (2018) Hybrid system of nickel–cobalt hydroxide on carbonised natural cellulose materials for supercapacitors. J Solid State Electrochem 22:387–393

    Article  Google Scholar 

  40. Wang B, Li S, Wu X, Liu J, Tian W (2016) Hierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage. Phys Chem Chem Phys 18:908–915

    Article  Google Scholar 

  41. Xia X, Lei W, Hao Q, Wang W, Wang X (2013) One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim Acta 99:253–261

    Article  Google Scholar 

  42. Zhou K, Zhou W, Liu X et al (2015) Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12:510–520

    Article  Google Scholar 

  43. Min S, Zhao C, Zhang Z, Chen G, Qian X, Guo Z (2015) Synthesis of Ni(OH)2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance. J Mater Chem A 3:3641–3650

    Article  Google Scholar 

  44. Zhang C, Geng X, Tang S, Deng M, Du Y (2017) NiCo2O4@rGO hybrid nanostructures on Ni foam as high-performance supercapacitor electrodes. J Mater Chem A 5:5912–5919

    Article  Google Scholar 

  45. Ren W, Guo D, Zhuo M, Guan B, Zhang D, Li Q (2015) NiMoO4@Co(OH)2 core/shell structure nanowire arrays supported on Ni foam for high-performance supercapacitors. RSC Adv 5:21881–21887

    Article  Google Scholar 

  46. Liu S, Lee SC, Patil UM et al (2017) Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors. J Mater Chem A 5:4543–4549

    Article  Google Scholar 

  47. Ye L, Zhao L, Zhang H et al (2017) Serpent-cactus-like Co-doped Ni(OH)2/Ni3S2 hierarchical structure composed of ultrathin nanosheets for use in efficient asymmetric supercapacitors. J Mater Chem A 5:1603–1613

    Article  Google Scholar 

  48. Wang H, Yan X, Piao G (2017) A high-performance supercapacitor based on fullerene C60 whisker and polyaniline emeraldine base composite. Electrochim Acta 231:264–271

    Article  Google Scholar 

  49. Li L, He F, Gai S et al (2014) Hollow structured and flower-like C@MnCo2O4 composite for high electrochemical performance in a supercapacitor. CrystEngComm 16:9873–9881

    Article  Google Scholar 

  50. Zhang Z, Liu Y, Huang Z, Ren L, Qi X, Wei X, Zhong J (2015) Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications. Phys Chem Chem Phys 17:20795–20804

    Article  Google Scholar 

  51. Ma XJ, Zhang WB, Kong LB, Luo YC, Kang L (2015) NiMoO4-modified MnO2 hybrid nanostructures on nickel foam: electrochemical performance and supercapacitor applications. New J Chem 39:6207–6215

    Article  Google Scholar 

  52. Xiao K, Xia L, Liu G, Wang S, Ding LX, Wang H (2015) Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. J Mater Chem A 3:6128–6135

    Article  Google Scholar 

  53. Ren X, Guo C, Xu L, Li T, Hou L, Wei Y (2015) Facile synthesis of hierarchical mesoporous honeycomb-like NiO for aqueous asymmetric supercapacitors. ACS Appl Mater Interfaces 7:19930–19940

    Article  Google Scholar 

  54. Cheng D, Yang Y, Xie J, Fang C, Zhang G, Xiong J (2015) Hierarchical NiCo2O4@NiMoO4 core-shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors. J Mater Chem A 3:14348–14357

    Article  Google Scholar 

  55. Yin Z, Chen Y, Zhao Y, Li C, Zhu C, Zhang X (2015) Hierarchical nanosheet-based CoMoO4–NiMoO4 nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction. J Mater Chem A 3:22750–22758

    Article  Google Scholar 

  56. Wang X, Sumboja A, Lin M, Yan J, Lee PS (2012) Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4:7266–7272

    Article  Google Scholar 

  57. Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sources 341:309–317

    Article  Google Scholar 

  58. Zhang S, Yin B, Wang Z, Peter F (2016) Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem Eng J 306:193–203

    Article  Google Scholar 

  59. Barzegar F, Bello A, Momodu DY et al (2015) Asymmetric supercapacitor based on an α-MoO3 cathode and porous activated carbon anode materials. RSC Adv 5:37462–37468

    Article  Google Scholar 

  60. Jadhav HS, Roy A, Chung WJ, Seo JG (2017) Growth of urchin-like ZnCo2O4 microspheres on nickel foam as a binder-free electrode for high-performance supercapacitor and methanol electro-oxidation. Electrochim Acta 246:941–950

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51401140), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20131402110003, 20131402120004), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (OIT) and the Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology (2016–06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haicheng Xuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Xuan, H., Gao, J. et al. Hierarchical three-dimensional NiMoO4-anchored rGO/Ni foam as advanced electrode material with improved supercapacitor performance. J Mater Sci 53, 8483–8498 (2018). https://doi.org/10.1007/s10853-018-2171-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2171-1

Keywords

Navigation